Published online by Cambridge University Press: 25 February 2011
We introduce a new quantitative description for electronic noise at Schottky contacts. The model combines spatially inhomogeneous current transport across the interface with the modulation of the local barrier height due to trapping dynamics of charged states located at or close to the interface. The experimentally observed increase of noise power with decreasing temperature is explained by the inhomogeneity of the interface. Our model fits experimental data obtained from different silicide/silicon Schottky contacts and the detailed analysis of measured noise spectra yields information about the interfacial potential fluctuations.