1. Introduction
1.1 Background
Let
$X$
be a Riemann surface. Let
$(E,\overline{\partial }_E,\theta )$
be a Higgs bundle of rank
$r$
on
$X$
. Let
$h$
be a Hermitian metric of
$E$
. We obtain the Chern connection
$\nabla _h$
of
$(E,\overline{\partial }_E,h)$
and the adjoint
$\theta ^{\dagger }_h$
of
$\theta$
with respect to
$h$
. Let
$R(h)$
denote the curvature of
$\nabla _h$
. The metric
$h$
is called a harmonic metric of
$(E,\overline{\partial }_E,\theta )$
if

The metric
$h$
is called a decoupled harmonic metric of
$(E,\overline{\partial }_E,\theta )$
if

Suppose that
$X$
is compact and that
$(E,\overline{\partial }_E,\theta )$
is stable of degree
$0$
. Let
$\Sigma _{E,\theta }$
denote the spectral curve of
$(E,\theta )$
. We assume that
$(E,\overline{\partial }_E,\theta )$
is generically regular semisimple, i.e.
$D(E,\theta )=\bigl \{ P\in X\,\big |\,|T^{\ast }_PX\cap \Sigma _{E,\theta }|\lt r \bigr \}$
is a finite subset of
$X$
.
Let
$h_{\det (E)}$
be a flat metric of
$\det (E)$
. According to Hitchin [Reference HitchinHit87] and Simpson [Reference SimpsonSim88],
$(E,\overline{\partial }_E,\theta )$
has a unique harmonic metric
$h$
such that
$\det (h)=h_{\det (E)}$
. Because
$(E,\overline{\partial }_E,t\theta )$
is stable of degree
$0$
for any
$t\gt 0$
, there exists a unique harmonic metric
$h_t$
of
$(E,\overline{\partial }_E,t\theta )$
for any
$t\gt 0$
such that
$\det (h_t)=h_{\det (E)}$
. We are interested in the behaviour of
$h_t$
as
$t\to \infty$
. See [Reference Gaiotto, Moore and NeitzkeGMN10], [Reference Katzarkov, Noll, Pandit and SimpsonKNP15] and [Reference Mazzeo, Swoboda, Weiss and WittMSW16] for the motivation for this study. It is related to the geometric P=W conjecture [Reference SzabóSza21, Reference SzabóSza22]. See also helpful survey papers [Reference LiLi19, Reference SwobodaSwo21].
For any simply connected relatively compact open subset
$K$
of
$X\setminus D(E,\theta )$
, there exists a decomposition of the Higgs bundle

such that
$\mathop{\textrm{rank}}\nolimits E_{K,i}=1$
. According to [Reference MochizukiMoc16], there exist
$C(K)\gt 0,\epsilon (K)\gt 0$
such that

for any local sections
$u$
and
$v$
of
$E_{K,i}$
and
$E_{K,j}$
$(i\neq j)$
in the decomposition (1). This implies that there exist
$C'(K)\gt 0$
and
$\epsilon '(K)\gt 0$
such that

As a result, for any sequence
$t(i)\to \infty$
, there exist a subsequence
$t'(j)\to \infty$
and gauge transformations
$g_{t'(j)}$
such that the sequence
$g_{t'(j)}^{\ast }h_{t'(j)}$
is convergent to a decoupled harmonic metric of
$(E,\overline{\partial }_E,\theta )_{|X\setminus D(E,\theta )}$
in the
$C^{\infty }$
-sense locally on
$X\setminus D(E,\theta )$
.
We may ask the following questions under appropriate assumptions.
-
Q1 Is there a sequence of gauge transformations
$g_t$ such that
$g_t^{\ast }h_t$ is convergent as
$t\to \infty$ locally on
$X\setminus D(E,\theta )$ . In other words, is the limit independent of the choice of a subsequence?
-
Q2 Let
$K\subset X\setminus D(E,\theta )$ be any relatively compact open subset. Then, is the order of the convergence on
$K$ dominated by
$e^{-\delta (K) t}$ for some
$\delta (K)\gt 0$ ?
In the rank two case, under the assumption that
$\Sigma _{E,\theta }$
is smooth, Mazzeo et al. [Reference Mazzeo, Swoboda, Weiss and WittMSW16] solved the both questions completely. In [Reference MochizukiMoc16], the question Q1 was solved without assuming the smoothness of the spectral curve. In the higher rank case, Collier and Li [Reference Collier and LiCL17] solved both questions for cyclic Higgs bundles. Fredrickson [Reference FredricksonFred] studied both questions when the spectral curve is smooth, under a mild assumption on the ramification of the spectral curve over
$X$
(see Remark 1.2 and [Reference FredricksonFred, Proposition 2.2, (2.9)]).
Remark 1.1. Chronologically, the study [Reference MochizukiMoc16] was inspired by the previous research in [Reference Collier and LiCL17], [Reference Katzarkov, Noll, Pandit and SimpsonKNP15] and [Reference Mazzeo, Swoboda, Weiss and WittMSW16].
Remark 1.2. Let
$Q\in \Sigma _{E,\theta }$
be a critical point of
$\pi :\Sigma _{E,\theta }\to X$
. Put
$P=\pi (Q)$
. Let
$(X_P,z)$
be a coordinate neighbourhood around
$P$
. By using the holomorphic
$1$
-form
$dz$
, we obtain the trivialization
$T^{\ast }X_P\simeq \mathbb{C}\times X_P$
. Let
$\Sigma _{E,\theta, Q}$
denote the connected component of
$T^{\ast }X_P\cap \Sigma _{E,\theta }$
which contains
$Q$
. We may assume that
$\Sigma _{E,\theta, Q}\cap T_P^{\ast }X_P=\{Q\}$
and that
$\Sigma _{E,\theta, Q}$
is holomorphically isomorphic to a disc. Let
$r(Q)$
denote the degree of
$\Sigma _{E,\theta, Q}\to X_P$
. There exist holomorphic functions
$a_j$
$(j=0,\ldots, r(Q)-1)$
on
$X_P$
such that

Because
$T^{\ast }X_P\cap \Sigma _{E,\theta, Q}=\{Q\}$
, there exists
$\alpha \in \mathbb{C}$
such that

The smoothness of
$\Sigma _{E,\theta, Q}$
is equivalent to the condition that
$a_0(z)-(-\alpha )^{r(Q)}$
has a simple
$0$
at
$z=0$
. To study the local property of
$\Sigma _{E,\theta, Q}$
around
$Q$
and
$\theta$
around
$P$
, we may assume that
$\alpha=0$
by considering
$\theta _{|X_P}-\alpha dz\,\cdot{\mathop{\textrm{id}}\nolimits }_{E_{|X_P}}$
. Moreover, we may assume that
$a_{r(Q)-1}$
is constantly
$0$
by considering
$\theta _{|X_P}-r(Q)^{-1}a_{r(Q)-1}\,dz\cdot{\mathop{\textrm{id}}\nolimits }_{E_{|X_P}}$
. By changing the coordinate
$z$
to
$w(z)$
satisfying
$w(0)=0$
and
$w({\partial }_zw)^{r(Q)}=-a_0(z)$
, we may assume that
$a_0(z)=-z$
. In general,
$a_j$
$(1\leqslant j\leqslant r(Q)-2)$
are not constantly
$0$
.
1.2 Main results
1.2.1 The symmetric case
As a first main result, let us mention that if
$(E,\overline{\partial }_E,\theta )$
has a non-degenerate symmetric pairing
$C$
, then both questions Q1 and Q2 are extremely easy to answer. As explained in [Reference Li and MochizukiLM10b], there exists a unique decoupled harmonic metric
$h^{C}$
of
$(E,\theta )_{|X\setminus D(E,\theta )}$
which is compatible with
$C$
. By using a variant of Simpson’s main estimate and an elementary linear algebraic argument in §3.1, we can answer both questions Q1 and Q2, and the limit is
$h^{C}$
in this case. The following theorem is a special case of Corollary 3.5.
Theorem 1.3.
Let
$K$
be any relatively compact open subset of
$X\setminus D(E,\theta )$
. Let
$s(h^C,h_t)$
denote the automorphism of
$E_{|X\setminus D(E,\theta )}$
determined by
$h_t=h^C\cdot s(h^C,h_t)$
. For any
$\ell \in \mathbb{Z}_{\geqslant 0}$
, there exist positive constants
$C(\ell, K)$
and
$\epsilon (\ell, K)$
such that the
$L_{\ell }^2$
-norm of
$s(h^C,h_t)-{\mathop{\textrm{id}}\nolimits }$
on
$K$
is dominated by
$C(\ell, K)\exp (-\epsilon (\ell, K)t)$
as
$t\to \infty$
.
For example, we may apply this theorem to a Higgs bundle contained in the Hitchin section because it has a canonical non-degenerate symmetric pairing.
Indeed, in Theorem1.3, we do not need to assume that
$X$
is compact. See Theorem3.4 and Corollary 3.5 for the precise statements. These results are also technically useful, which will be applied to the third main result (see §1.2.3 and 1.2.4).
1.2.2 The irreducible case
The second main result in this paper is an affirmative answer to question Q1 in the case that the spectral curve is locally and globally irreducible.
We obtain the ideal sheaf
$\mathcal{I}(\Sigma _{E,\theta })\subset \mathcal{O}_{T^{\ast }X}$
of
$\Sigma _{E,\theta }$
. We say that
$\Sigma _{E,\theta }$
is locally irreducible if the stalks
$\mathcal{I}(\Sigma _{E,\theta })_P$
$(P\in \Sigma _{E,\theta })$
are prime ideals. It is equivalent to the condition that for any
$P\in \Sigma _{E,\theta }$
the germ of
$\Sigma _{E,\theta }$
at
$P$
cannot be expressed as the union of two distinct germs of non-empty complex analytic subsets. (See [Reference Grauert and RemmertGR84, §4.1].) We say that
$\Sigma _{E,\theta }$
is globally irreducible if it cannot be expressed as the union of two distinct closed analytic non-empty subsets. The two conditions are independent, in general. Under the assumption that
$(E,\theta )$
is stable,
$\Sigma _{E,\theta }$
is locally irreducible if and only if it is globally irreducible.
Theorem 1.4 (Corollary 7.7). Suppose that
$\Sigma _{E,\theta }$
is locally irreducible. Then, the sequence
$h_t$
is convergent to a decoupled harmonic metric
$h_{\infty }$
in the
$C^{\infty }$
-sense locally on
$X\setminus D(E,\theta )$
.
See Theorem7.5 for the more general statement.
More precisely, we canonically construct a filtered bundle
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
over
$\mathcal{V}=E(\ast D(E,\theta ))$
in an algebraic way from
$(E,\theta )$
such that (i)
$(\mathcal{P}^{\star }_{\ast }(\mathcal{V}),\theta )$
is a decomposable filtered Higgs bundle in the sense of Definition 5.10, (ii)
$(\mathcal{P}^{\star }_{\ast }(\mathcal{V}),\theta )$
is stable of degree
$0$
and (iii)
$\det (\mathcal{P}^{\star }_{\ast }\mathcal{V})$
equals the filtered bundle naturally induced by
$\det (E)$
. There exists a unique decoupled harmonic metric
$h_{\infty }$
of
$(E,\theta )_{|X\setminus D(E,\theta )}$
adapted to
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
such that
$\det (h_{\infty })=h_{\det (E)}$
. We shall prove that the sequence
$h_t$
is convergent to
$h_{\infty }$
as
$t\to \infty$
on
$X\setminus D(E,\theta )$
.
An outline of the proof is as follows. Let
$P\in D(E,\theta )$
. Let
$X_P$
be a small neighbourhood of
$P$
in
$X$
. By a theorem of Donaldson [Reference DonaldsonDon92], there exists a harmonic metric
$h_{P,t}$
of
$(E,\overline{\partial },t\theta )_{|X_P}$
such that
$h_{P,t|{\partial } X_P}=h_{\infty |{\partial } X_P}$
. According to Proposition 6.6, the sequence
$h_{P,t}$
is convergent to
$h_{\infty |X_P\setminus \{P\}}$
in the
$C^{\infty }$
-sense locally on
$X_P\setminus \{P\}$
as
$t\to \infty$
. As in [Reference Mazzeo, Swoboda, Weiss and WittMSW16], by patching
$h_{P,t}$
and
$h_{\infty }$
, we construct a family of Hermitian metrics
$\widetilde{h}_t$
$(t\gt 0)$
of
$E$
such that (i)
$\det (\widetilde{h}_t)=h_{\det (E)}$
, (ii)
$\lim _{t\to \infty }\widetilde{h}_t=h_{\infty }$
on
$X\setminus D(E,\theta )$
and (iii)
$\int _X \bigl | R(\widetilde{h}_t) +\bigl [ t\theta, (t\theta )^{\dagger }_{\widetilde{h}_t} \bigr ]\bigr |\to 0$
. Let
$s(\widetilde{h}_t,h_t)$
denote the automorphism of
$E$
determined by
$h_t=\widetilde{h}_t\cdot s(\widetilde{h}_t,h_t)$
. Then, we shall prove that
$\sup _X(s(\widetilde{h}_t,h_t)-{\mathop{\textrm{id}}\nolimits }_E)\to 0$
by essentially the same argument as that in [Reference MochizukiMoc16].
Because of the assumption of the local irreducibility of
$\Sigma _{E,\theta }$
, it is easy to find the candidate of ‘the limiting configuration’
$h_{\infty }$
. In the rank two case, the Higgs bundle
$(E,\theta )_{|X_P}$
is easy to understand. There is a homogeneous wild harmonic bundle
$(E'_P,\theta '_P,h'_P)$
on
$(\mathbb{P}^1,\infty )$
such that the restriction of
$(E'_P,\theta '_P)$
to a neighbourhood of
$0$
is isomorphic to
$(E,\theta )_{|X_P}$
, where we consider an
$S^1$
-action on
$\mathbb{P}^1$
induced by
$(a,z)\mapsto a^mz$
for some
$m\in \mathbb{Z}_{\gt 0}$
. (See [Reference MochizukiMoc21, §8] for homogeneity of harmonic bundles with respect to an
$S^1$
-action.) The special case is a fiducial solution in [Reference Mazzeo, Swoboda, Weiss and WittMSW16]. In [Reference MochizukiMoc16], the restriction of
$h'_P$
was useful in the construction of approximate solutions
$\widetilde{h}_t$
. In the higher rank case, the Higgs bundle
$(E,\theta )_{|X_P}$
is more complicated even under the assumption of local irreducibility. It does not seem that the approximation by a homogeneous wild harmonic bundle can work well. Therefore, we develop a way to use the solutions of the boundary-value problem in the construction of approximate solutions.
Remark 1.5. Because we also study the question
$\textbf{Q1}$
for wild harmonic bundles under a similar assumption on the spectral curve, we also study the Dirichlet problem for wild harmonic bundles (Theorem 2.8).
1.2.3 The order of convergence in the smooth case
We study question Q2 under the following additional condition.
Condition 1.6.
Let
$\rho :\widetilde{\Sigma }_{E,\theta }\to \Sigma _{E,\theta }$
be the normalization. There exists a holomorphic line bundle
$L$
with an isomorphism
$E\simeq (\pi \circ \rho )_{\ast }L$
such that
$\theta$
is induced by the
$\mathcal{O}_{T^{\ast }X}$
-action on
$\rho _{\ast }L$
.
For example, this condition is satisfied if
$\Sigma _{E,\theta }$
is smooth according to [Reference Beauville, Narasimhan and RamananBNR89, Reference HitchinHit87]. We shall prove the following theorem.
Theorem 1.7 (Theorem7.14). Suppose that Condition 1.6 is satisfied. Let
$s(h_{\infty },h_{t})$
be the automorphism of
$(E,\theta )_{|X\setminus D(E,\theta )}$
determined by
$h_t=h_{\infty }\cdot s(h_{\infty },h_t)$
. Let
$K\subset X\setminus D(E,\theta )$
be any relatively compact open subset. For any
$\ell \in \mathbb{Z}_{\geqslant 0}$
, there exist
$C(\ell, K)\gt 0$
and
$\epsilon (\ell, K)\gt 0$
such that the following holds as
$t\to \infty$
:

To prove Theorem1.7, we refine the construction of
$\widetilde{h}_t$
in §1.2.2. For each
$P\in D(E,\theta )$
, there exists a non-degenerate symmetric pairing
$C_P$
of
$(E,\overline{\partial }_E,\theta )_{|X_P}$
such that
$C_{P|X_P\setminus \{P\}}$
is compatible with
$h_{\infty |X_P\setminus \{P\}}$
. It is easy to see that the harmonic metric
$h_{P,t}$
of
$(E,\theta )_{|X_P}$
satisfying
$h_{P,t|{\partial } X_P}=h_{\infty |{\partial } X_P}$
is compatible with
$C_{P}$
. Let
$s(h_{\infty },h_{P,t})$
be the automorphism of
$E_{|X_P\setminus \{P\}}$
determined by
$h_{P,t}=h_{\infty |X_P\setminus \{P\}}\cdot s(h_{\infty },h_{P,t})$
. By the result in the symmetric case mentioned in §1.2.1, on any relatively compact open subset
$K$
of
$X_P\setminus \{P\}$
,
$s(h_{\infty },h_{P,t})-{\mathop{\textrm{id}}\nolimits }$
converges to
$0$
at a speed of the order of
$e^{-\delta (K)t}$
. Then, the following stronger condition is satisfied:

Then, we can obtain the estimate of
$\sup |s(\widetilde{h}_t,h_t)-{\mathop{\textrm{id}}\nolimits }|$
on any relatively compact open subset in
$X\setminus D(E,\theta )$
. By a general argument in §4.2, we can obtain the desired estimate of the norms of
$s(\widetilde{h}_t,h_t)-{\mathop{\textrm{id}}\nolimits }$
and its higher derivatives on
$X$
even around
$D(E,\theta )$
.
1.2.4 A family case
The result and the method in §1.2.3 can be generalized to the following family case. Let
$p_1:\widetilde{\mathcal{X}}\to \mathcal{S}$
be a smooth proper morphism of complex manifolds such that each fiber is connected and
$1$
-dimensional. We also assume that
$\mathcal{S}$
is connected. Let
$\pi :\mathcal{S}\times T^{\ast }X\to \mathcal{S}\times X$
and
$p_2:\mathcal{S}\times X\to \mathcal{S}$
denote the projections. Let
$\Phi _0:\widetilde{\mathcal{X}}\to \mathcal{S}\times T^{\ast }X$
be a morphism of complex manifolds such that
$p_2\circ \pi \circ \Phi _0=p_1$
. We set
$\Phi _1:=\pi \circ \Phi _0:\widetilde{\mathcal{X}}\to \mathcal{S}\times X$
. We assume the following.
-
–
$\Phi _1$ is proper and finite.
-
– There exists a closed complex analytic hypersurface
$\mathcal{D}\subset \mathcal{S}\times X$ such that (i)
$\mathcal{D}$ is finite over
$\mathcal{S}$ , (ii) the induced map
$\widetilde{\mathcal{X}}\setminus \Phi _1^{-1}(\mathcal{D}) \longrightarrow (\mathcal{S}\times X)\setminus \mathcal{D}$ is a covering map, and (iii)
$\Phi _0$ induces an injection
$\widetilde{\mathcal{X}}\setminus \Phi _1^{-1}(\mathcal{D}) \longrightarrow \mathcal{S}\times T^{\ast }X$ .
We set
$r:=|\Phi _1^{-1}(P)|$
for any
$P\in (\mathcal{S}\times X)\setminus \mathcal{D}$
. Let
$g(X)$
and
$\widetilde{g}$
denote the genus of
$X$
and
$p_1^{-1}(x)$
$(x\in \mathcal{S})$
, respectively. We set
$X_x=\{x\}\times X$
and
$\mathcal{D}_{x}=\mathcal{D}\cap X_x$
. There exists a natural isomorphism
$X_x\simeq X$
. We note that
$\mathcal{D}\to \mathcal{S}$
is not assumed to be a covering map, and hence
$|\mathcal{D}_{x}|$
is not necessarily constant on
$\mathcal{S}$
.
Let
$\mathcal{L}$
be a holomorphic line bundle on
$\widetilde{\mathcal{X}}$
such that
$\deg (\mathcal{L}_{|p_1^{-1}(x)})= \widetilde{g}-rg(X)+r-1$
. We obtain a locally free
$\mathcal{O}_{\mathcal{S}\times X}$
-module
$\mathcal{E}=\Phi _{1\ast }(\mathcal{L})$
. It is equipped with the morphism
$\theta : \mathcal{E}\to \mathcal{E}\otimes \Omega^1_{\mathcal{S}\times X/\mathcal{S}}$
induced by the
$\mathcal{O}_{\mathcal{S}\times T^{\ast }X}$
-action on
$\Phi _{0\ast }\mathcal{L}$
. For each
$x\in \mathcal{S}$
, we obtain the Higgs bundle
$(\mathcal{E}_x,\theta _x)=(\mathcal{E},\theta )_{|X_x}$
, which is stable of degree
$0$
.
There exists a Hermitian metric
$h_{\det \mathcal{E}}$
of
$\det (\mathcal{E})$
such that
$h_{\det \mathcal{E}|X_x}$
are flat for any
$x\in \mathcal{S}$
. There exist harmonic metrics
$h_{t,x}$
of
$(\mathcal{E}_x,t\theta _x)$
$(x\in \mathcal{S})$
such that
$\det (h_{t,x})=h_{\det \mathcal{E}|X_x}$
. There also exist decoupled harmonic metrics
$h_{\infty, x}$
$(x\in \mathcal{S})$
of
$(\mathcal{E}_x,\theta _x)_{|X_x\setminus \mathcal{D}_{x}}$
such that
$\det (h_{\infty, x})=h_{\det (\mathcal{E})|X_x\setminus \mathcal{D}_x}$
.
Theorem 1.8 (Theorem7.22). Let
$x_0\in \mathcal{S}$
. Let
$K$
be a relatively compact open subset of
$X_{x_0}\setminus \mathcal{D}_{x_0}$
. Let
$\mathcal{S}_0$
be a neighbourhood of
$x_0$
in
$\mathcal{S}$
such that
$\mathcal{S}_0\times K$
is relatively compact in
$(\mathcal{S}\times X)\setminus \mathcal{D}$
. For any
$\ell \in \mathbb{Z}_{\geqslant 0}$
, there exist
$C(\ell ),\epsilon (\ell )\gt 0$
such that the
$L_{\ell }^2$
-norm of
$s(h_{\infty, x},h_{t,x})-{\mathop{\textrm{id}}\nolimits }$
$(x\in \mathcal{S}_0,t\geqslant 1)$
on
$K$
are dominated by
$C(\ell )\exp (-\epsilon (\ell )t)$
.
Remark 1.9. Note that for another Hermitian metric
$h'_{\det \mathcal{E}}$
of
$\det (\mathcal{E})$
such that
$h'_{\det \mathcal{E}|X_x}$
are flat for any
$x\in \mathcal{S}$
, we obtain an
$\mathbb{R}_{\gt 0}$
-valued
$C^{\infty }$
-function
$\beta$
on
$\mathcal{S}$
determined by
$h'_{\det (\mathcal{E})}=\beta h_{\det (\mathcal{E})}$
, and
$\beta ^{1/r}h_{t,x}$
(respectively
$\beta ^{1/r}h_{\infty, x}$
) are harmonic metrics (respectively decoupled harmonic metrics) of
$(\mathcal{E}_x,t\theta _x)$
(respectively
$(\mathcal{E}_x,\theta _x)_{|X_x\setminus \mathcal{D}_x}$
) such that
$\det (\beta ^{1/r}h_{t,x})=h'_{\det \mathcal{E}|X_x}$
(respectively
$\det (\beta ^{1/r}h_{\infty, x})= h'_{\det (\mathcal{E})|X_x\setminus \mathcal{D}_x}$
). Hence, the claim of Theorem 1.8 is independent of the choice of
$h_{\det \mathcal{E}}$
.
Remark 1.10. We may apply Theorem 1.8 to obtain a locally uniform estimate for large-scale solutions of the Hitchin equation for a family of stable Higgs bundles of degree
$0$
whose spectral curves are smooth.
2. Preliminaries
2.1 Some definitions
2.1.1 Decoupled harmonic bundles
Let
$Y$
be a Riemann surface. Let
$(V,\theta )$
be a Higgs bundle on
$Y$
.
Definition 2.1. A Hermitian metric
$h$
of
$V$
is called a decoupled harmonic metric of
$(V,\theta )$
if the following conditions are satisfied.
-
(A1)
$h$ is a harmonic metric of the Higgs bundle
$(V,\overline{\partial }_V,\theta )$ .
-
(A2)
$h$ is flat, i.e. the Chern connection
$\nabla _h$ of
$(V,\overline{\partial }_V,h)$ is flat.
Such a
$(V,\theta, h)$
is called a decoupled harmonic bundle.
Note that the conditions (A1) and (A2) imply that
$\theta$
and
$\theta ^{\dagger }_h$
are commuting.
2.1.2 Symmetric Higgs bundles
Let
$C$
be a non-degenerate symmetric product of
$V$
. It is called a non-degenerate symmetric product of the Higgs bundle
$(V,\theta )$
if
$\theta$
is self-adjoint with respect to
$C$
. Such a tuple
$(V,\theta, C)$
is called a symmetric Higgs bundle. Let
$V^{\lor }$
denote the dual bundle of
$V$
. Let
$\Psi _C:V\to V^{\lor }$
be the isomorphism induced by
$C$
. Let
$\theta ^{\lor }$
be the induced Higgs field of
$V^{\lor }$
. The condition is equivalent to
$\Psi _C$
inducing an isomorphism of the Higgs bundles
$(V,\theta )\simeq (V^{\lor },\theta ^{\lor })$
.
A Hermitian metric
$h$
of
$V$
is said to be compatible with
$C$
if
$\Psi _C$
is isometric with respect to
$h$
and its dual Hermitian metric
$h^{\lor }$
of
$V^{\lor }$
.
2.1.3 Generically regular semisimple Higgs bundles
Let
$\Sigma _{V,\theta }\subset T^{\ast }Y$
denote the spectral curve of
$(V,\theta )$
. We say that
$(V,\theta )$
is regular semisimple if the projection
$\Sigma _{V,\theta }\to Y$
is a covering map. We say that
$(V,\theta )$
is generically regular semisimple if there exists a discrete subset
$D\subset Y$
such that
$(V,\theta )_{|Y\setminus D}$
is regular semisimple.
Let
$\pi :\Sigma _{V,\theta }\to Y$
denote the projection. If
$(V,\theta )$
is regular semisimple, there exists a line bundle
$L_V$
on
$\Sigma _{V,\theta }$
with an isomorphism
$\pi _{\ast }L_V\simeq V$
such that
$\theta$
is induced by
$\mathcal{O}_{T^{\ast }Y}$
-action on
$L_V$
.
2.2 Regular semisimple case
2.2.1 Decoupled harmonic metrics
Suppose that
$(V,\theta )$
is regular semisimple. We consider the following condition for a Hermitian metric
$h$
of
$V$
.
-
(A3) For any
$P\in Y$ , the eigen decomposition of
$\theta$ at
$P$ is orthogonal with respect to
$h$ .
Note that (A3) holds if and only if
$\theta$
and
$\theta ^{\dagger }_h$
are commuting. The following lemma is easy to see.
Lemma 2.2.
If two of the conditions (A1), (A2), and (A3) are satisfied for a Hermitian metric
$h$
of
$V$
, then
$h$
is a decoupled harmonic metric of
$(V,\theta )$
.
A flat metric
$h_{L_V}$
of
$L_V$
induces a Hermitian metric
$\pi _{\ast }(h_{L_V})$
of
$V$
. It is easy to check that
$\pi _{\ast }(h_{L_V})$
is a decoupled harmonic metric of
$(V,\theta )$
.
Proposition 2.3.
This procedure induces an equivalence between flat metrics of
$L_V$
and decoupled harmonic metrics of
$(V,\theta )$
.
Remark 2.4. Let
$(V,\theta, h)$
be a decoupled harmonic bundle. Let
$\Sigma _{V,\theta }=\coprod _{i\in \Lambda }\Sigma _{V,\theta, i}$
be the decomposition into connected components. There exists the corresponding decomposition of the Higgs bundle
$(V,\theta )=\bigoplus _{i\in \Lambda }(V_i,\theta _i)$
such that
$\Sigma _{V_i,\theta _i}=\Sigma _{V,\theta, i}$
. Because
$h$
is a decoupled harmonic metric, the decomposition is orthogonal with respect to
$h$
. Hence, we obtain the decomposition of a decoupled harmonic bundle
$(V,\theta, h)=\bigoplus (V_i,\theta _i,h_i)$
.
2.2.2 Symmetric products
The multiplication of
$\mathcal{O}_{\Sigma _{V,\theta }}$
induces a multiplication

Any local section
$f$
of
$\pi _{\ast }\mathcal{O}_{\Sigma _{V,\theta }}$
induces an endomorphism
$F_f$
of the locally free
$\mathcal{O}_Y$
-module
$\pi _{\ast }\mathcal{O}_{\Sigma _{V,\theta }}$
. We obtain the local section
${\mathop{\textrm{tr}}\nolimits }(f):={\mathop{\textrm{tr}}\nolimits }(F_f)$
of
$\mathcal{O}_Y$
.
Let
$C_{L_V}$
be a non-degenerate symmetric pairing of
$L_V$
. We obtain the non-degenerate pairing
$C$
of
$V=\pi _{\ast }L_V$
:

Proposition 2.5.
This procedure induces an equivalence between non-degenerate symmetric pairings of
$L_V$
and non-degenerate symmetric pairings of
$(V,\theta )$
.
We recall the following proposition.
Proposition 2.6 [Reference Li and MochizukiLM10b, Proposition 2.30]. For any non-degenerate symmetric pairing
$C$
of
$(V,\theta )$
, there exists a unique decoupled harmonic metric
$h^C$
of
$(V,\theta )$
which is compatible with
$C$
.
Indeed, let
$C_{L_V}$
be the non-degenerate symmetric pairing of
$L_V$
corresponding to
$C$
. Let
$h_{L_V}$
be the unique Hermitian metric of
$L_V$
satisfying
$h_{L_V}(s,s)=|C_{L_V}(s,s)|$
. We obtain the Hermitian metric
$h^C$
corresponding to
$h_{L_V}$
. Then,
$h^C$
is the decoupled harmonic metric compatible with
$C$
.
As for the converse, the following holds.
Lemma 2.7.
Let
$h$
be a decoupled harmonic metric of
$(V,\theta )$
. There exists a non-degenerate symmetric pairing of
$(V,\theta )$
compatible with
$h$
if and only if the following condition is satisfied.
-
– Let
$h_{L_V}$ be the corresponding Hermitian metric of
$L_V$ , whose Chern connection is flat. Let
$\Sigma _{V,\theta, i}$ be any connected component of
$\Sigma _{V,\theta }$ . Let
$\rho _i:\pi _1(\Sigma _{V,\theta, i})\to S^1$ be the homomorphism obtained as the monodromy of
$(L_V,h_{L_V})_{|\Sigma _{V,\theta, i}}$ . Then, the image of
$\rho _i$ is contained in
$\{\pm 1\}$ .
Proof.
There exists a non-degenerate symmetric pairing of
$(V,\theta )$
compatible with
$h$
if and only if there exists a non-degenerate symmetric pairing
$C_{L_V}$
of
$L_V$
compatible with
$h_{L_V}$
. If such a
$C_{L_V}$
exists, then each
$\rho _i$
comes from an
$\mathbb{R}$
-representation. (See [Reference Li and MochizukiLM10b, §2].) Hence, the image is contained in
$\{\pm 1\}$
. Conversely, if the image of each
$\rho _i$
is contained in
$\{\pm 1\}$
, then it is easy to construct such a pairing
$C_{L_V}$
.
2.3 Dirichlet problem for wild harmonic bundles on curves
Let
$Y$
be a Riemann surface equipped with a Kähler metric
$g_Y$
. Let
$X\subset Y$
be a connected relatively compact connected open subset whose boundary
${\partial } X$
is smooth and non-empty. Let
$D\subset X$
be a finite subset.
Let
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
be a good filtered Higgs bundle on
$(Y,D)$
of rank
$r$
. (See [Reference MochizukiMoc21, §2.4] for the notion of good filtered Higgs bundles.) We obtain
$(\det (\mathcal{P}_{\ast }\mathcal{V}),{\mathop{\textrm{tr}}\nolimits }(\theta ))$
. We set
$(V,\theta )=(\mathcal{V},\theta )_{|Y\setminus D}$
. Let
$h_{{\partial } X}$
be a Hermitian metric of
$V_{|{\partial } X}$
.
Theorem 2.8.
There exists a unique harmonic metric
$h$
of
$(V,\overline{\partial }_V,\theta )_{|X\setminus D}$
such that (i)
$h_{|{\partial } X}=h_{{\partial } X}$
and (ii)
$\mathcal{P}^h_{\ast }(V)=\mathcal{P}_{\ast }\mathcal{V}$
. (See [Reference MochizukiMoc21
, §2.5] for the filtered sheaf
$\mathcal{P}^h_{\ast }(V)$
.)
Proof.
Let us study the case
$r=1$
. There exists a Hermitian metric
$h_0$
of
$V$
such that (i)
$h_{0|{\partial } X}=h_{{\partial } X}$
, (ii)
$h_0$
is flat around any point of
$D$
, and (iii)
$\mathcal{P}^{h_0}_{\ast }(V)=\mathcal{P}_{\ast }V$
. There exists a
$C^{\infty }$
-function
$\alpha :X\to \mathbb{R}$
such that
$\alpha _{|{\partial } X}=0$
and that
$\overline{\partial }{\partial }\alpha =R(h_0)$
. Then,
$h=e^{-\alpha }h_0$
is a flat metric of
$V$
satisfying the desired conditions. Let
$h'$
be another flat metric satisfying the same condition. We obtain the
$C^{\infty }$
-function
$s$
on
$X$
determined by
$h'=e^sh$
. Because
$\Delta _{g_Y}s=0$
and
$s_{|{\partial } X}=0$
, we obtain that
$s=0$
on
$X$
, and hence
$h'=h$
.
Let us study the case
$r\geqslant 2$
. At each point
$P\in D$
, let
$(X_P,z_P)$
be a holomorphic coordinate neighbourhood around
$P$
such that (i)
$X_P$
is relatively compact in
$X\setminus (D\setminus \{P\})$
, (ii)
$\overline{X}_{P}\cap \overline{X}_{P'}=\emptyset$
for any
$P,P'\in D$
, and (iii) the coordinate
$z_P$
induces
$(X_P,P)\simeq (\{|z|\lt 1\},0)$
. Let
$h_{\det (V)}$
be a flat metric of
$\det (V)$
adapted to
$\det (\mathcal{P}_{\ast }V)$
such that
$h_{\det (V)|{\partial } X}=\det (h_{{\partial } X})$
. Let
$h_0$
be a Hermitian metric of
$V$
such that (i)
$h_{0|{\partial } X}=h_{{\partial } X}$
, (ii)
$\det (h_0)=h_{\det (V)}$
, (iii)
$\mathcal{P}^{h_0}_{\ast }(V)=\mathcal{P}_{\ast }\mathcal{V}$
, and (iv) around
$P\in D$
, we have
$\bigl | R(h_0)+[\theta, \theta ^{\dagger }_{h_0}] \bigr |_{h,g_Y} =O(|z_P|^{-2+\epsilon })$
for some
$\epsilon \gt 0$
. (For example, see [Reference MochizukiMoc21] for the construction.) We set
$F(h_0)=R(h_0)+[\theta, \theta ^{\dagger }_{h_0}]$
. There exists
$p\gt 1$
such that
$F(h_0)$
is
$L^p$
on
$X$
. There exists an
$L_2^p$
-function
$\alpha$
on
$X$
such that (i)
$\Delta _{g_Y}(\alpha )=|F(h_0)_{|X}|_{h_0,g_Y}$
and (ii)
$\alpha _{|{\partial } X}=0$
. There exists
$C_0\gt 0$
such that
$|\alpha |\lt C_0$
on
$X$
.
For
$0\lt \delta \lt 1$
, we set
$X_P(\delta )=\{|z_P|\lt \delta \}$
and
$Z(\delta ):=X\setminus \bigcup _{P\in D}X_P(\delta )$
. We have
${\partial } Z(\delta )={\partial } X\cup \bigcup _{P\in D}{\partial } X_P(\delta )$
. By the Dirichlet problem for harmonic metrics [Reference DonaldsonDon92, Reference Li and MochizukiLM10a], there exists a harmonic metric
$h_{Z(\delta )}$
of
$(V,\overline{\partial }_V,\theta )_{|Z(\delta )}$
such that (i)
$\det (h_{Z(\delta )})=h_{\det (V)|Z(\delta )}$
and (ii)
$h_{Z(\delta )|{\partial } Z(\delta )}=h_{0|{\partial } Z(\delta )}$
. Let
$s_{Z(\delta )}$
be the automorphism of
$V_{|Z(\delta )}$
determined by
$h_{Z(\delta )}=h_{0|Z(\delta )}\cdot s_{Z(\delta )}$
. According to [Reference SimpsonSim88, Lemma 3.1], the following holds on
$Z(\delta )$
:

Because
$\Delta _{g_Y}\bigl ( \log{\mathop{\textrm{Tr}}\nolimits }(s_{Z(\delta )})-\alpha \bigr ) \leqslant 0$
, we obtain

Because
$\det (s_{Z(\delta )})=1$
, there exists
$C_1\gt 0$
, which depends only on
$C_0$
and
$r$
, such that

Then, there exists a sequence
$\delta (i)\to 0$
$(i=1,2,\ldots)$
such that the following hold (see [Reference Li and MochizukiLM10a, Proposition 2.6]).
-
– The sequence
$h_{Z(\delta (i))}$ is convergent in the
$C^{\infty }$ -sense on any relatively compact open subset of
$X\setminus D$ . Let
$h_{\infty }$ denote the limit, which is a harmonic metric.
-
–
$h_{\infty }$ is mutually bounded with
$h_0$ . As a result,
$\mathcal{P}^{h_{\infty }}_{\ast }(V)=\mathcal{P}_{\ast }\mathcal{V}_{|X}$ .
-
–
$\det (h_{\infty })=h_{\det (V)}$ .
Let
$Z:=Z(1/2)$
. There exists a harmonic metric
$h_{1,Z}$
of
$(V,\overline{\partial }_V,\theta )_{|Z}$
such that (i)
$\det (h_{1,Z})=h_{\det (V)|Z}$
, (ii)
$h_{1,Z|{\partial } X_P(1/2)}=h_{\infty |{\partial } X_P(1/2)}$
for any
$P\in D$
, and (iii)
$h_{1,Z|{\partial } X}=h_{0|{\partial } X}$
. Let
$i_0$
such that
$\delta (i_0)\lt 1/2$
. Let
$s_{1,\delta (i)}$
be the automorphism of
$V_{|Z}$
determined by
$h_{Z(\delta (i))|Z}=h_{1,Z}\cdot s_{1,\delta (i)}$
. We obtain
$\Delta _{g_Y}\log{\mathop{\textrm{Tr}}\nolimits }(s_{1,\delta (i)})\leqslant 0$
on
$Z$
. Hence, we obtain

Because
$\log{\mathop{\textrm{Tr}}\nolimits }(s_{1,\delta (i)}/r)\to 0$
on
$\bigcup _{P\in D}{\partial } X_P(1/2)$
, we obtain that
$s_{1,\delta (i)}\to{\mathop{\textrm{id}}\nolimits }_{V}$
on
$Z$
. Hence, we obtain
$h_{\infty |Z}=h_{1,Z}$
, which implies that
$h_{\infty }$
satisfies the condition
$h_{\infty |{\partial } X}=h_{0|{\partial } X}$
.
Let
$h'$
be another harmonic metric satisfying the conditions (i) and (ii). Note that
$\det (h')=h_{\det (V)}$
. Let
$s$
be the automorphism of
$V$
determined by
$h'=h\cdot s$
. By [Reference SimpsonSim88, Lemma 3.1], we have the following equality on
$X\setminus D$
:

This implies that
${\mathop{\textrm{Tr}}\nolimits }(s)$
is subharmonic on
$X\setminus D$
. Because
${\mathop{\textrm{Tr}}\nolimits }(s)$
is bounded, we obtain that
${\mathop{\textrm{Tr}}\nolimits }(s)$
is a subharmonic function on
$X$
(see [Reference SimpsonSim90, Lemma 2.2]). We obtain
$\max _X{\mathop{\textrm{Tr}}\nolimits }(s)\leqslant \max _{{\partial } X}{\mathop{\textrm{Tr}}\nolimits }(s)=r$
. Because
$\det (s)=1$
, we have
${\mathop{\textrm{Tr}}\nolimits }(s)\geqslant r$
. Hence, we obtain
${\mathop{\textrm{Tr}}\nolimits }(s)=r$
on
$X$
, which implies
$s={\mathop{\textrm{id}}\nolimits }_V$
.
Corollary 2.9.
Suppose that
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is equipped with a perfect symmetric pairing
$C$
. If
$h_{{\partial } X}$
is compatible with
$C_{|{\partial } X}$
, then
$h$
is also compatible with
$C$
.
Proof.
Let
$h_{{\partial } X}^{\lor }$
be the Hermitian metric of
$V^{\lor }_{|{\partial } X}$
induced by
$h_{{\partial } X}$
. Let
$h^{\lor }$
be the Hermitian metric of
$V^{\lor }$
induced by
$h$
. Then,
$h^{\lor }$
is the unique harmonic metric of
$(V^{\lor },\theta ^{\lor })$
satisfying
$h^{\lor }_{|{\partial } X}=h_{{\partial } X}^{\lor }$
.
Let
$\Psi _C:(V,\theta )\simeq (V^{\lor },\theta ^{\lor })$
denote the isomorphism induced by
$C$
. Because
$h_{{\partial } X}$
is compatible with
$C$
,
$h_{{\partial } X}=\Psi _C^{\ast }h_{{\partial } X}^{\lor }$
holds on
${\partial } X$
. By the uniqueness, we obtain
$h=\Psi _C^{\ast }(h^{\lor })$
, i.e.
$h$
is compatible with
$C$
.
3. Large-scale solutions in the symmetric case
3.1 Preliminary from linear algebra
3.1.1 Hermitian metrics compatible with a non-degenerate symmetric pairing
Let
$V$
be an
$r$
-dimensional
$\mathbb{C}$
-vector space. The dual space is denoted by
$V^{\lor }$
. An
$\mathbb{R}$
-structure of
$V$
is an
$r$
-dimensional
$\mathbb{R}$
-subspace
$V_{\mathbb{R}}$
such that the natural morphism
$\mathbb{C}\otimes _{\mathbb{R}}V_{\mathbb{R}}\longrightarrow V$
is an isomorphism. A positive definite symmetric bilinear form
$C_{\mathbb{R}}$
of
$V_{\mathbb{R}}$
induces a Hermitian metric
$h$
and a non-degenerate symmetric bilinear form
$C$
of
$V$
by
$h(\alpha \otimes u,\beta \otimes v) =\alpha \overline{\beta } C_{\mathbb{R}}(u,v)$
and
$C(\alpha \otimes u,\beta \otimes v) =\alpha \beta C_{\mathbb{R}}(u,v)$
for any
$\alpha, \beta \in \mathbb{C}$
and
$u,v\in V_{\mathbb{R}}$
. An orthogonal decomposition
$V_{\mathbb{R}}=\bigoplus V_{\mathbb{R},i}$
with respect to
$C_{\mathbb{R}}$
induces a decomposition
$V=\bigoplus V_{\mathbb{R},i}\otimes \mathbb{C}$
which is clearly orthogonal with respect to both
$h$
and
$C$
.
Let
$C$
be a non-degenerate symmetric pairing of
$V$
. It induces a
$\mathbb{C}$
-linear morphism
$\Psi _C:V\to V^{\lor }$
. A Hermitian metric
$h$
of
$V$
is called compatible with
$C$
if
$\Psi _C$
is isometry between
$(V,h)$
and
$(V^{\lor },h^{\lor })$
, where
$h^{\lor }$
denotes the Hermitian metric of
$V^{\lor }$
induced by
$h$
. If
$h$
is compatible with
$C$
, there uniquely exists an
$\mathbb{R}$
-structure
$V_{\mathbb{R}}$
of
$V$
equipped with a positive definite symmetric bilinear form
$C_{\mathbb{R}}$
such that (i)
$V_{\mathbb{R}}\otimes \mathbb{C}=V$
and (ii)
$h$
and
$C$
are induced by
$C_{\mathbb{R}}$
.
3.1.2 An estimate
Let
$C$
be a non-degenerate symmetric form of
$V$
. Let
$V=\bigoplus _{i=1}^r V_i$
be an orthogonal decomposition with respect to
$C$
such that
$\dim V_i=1$
. The following lemma is obvious.
Lemma 3.1.
There exists a unique Hermitian metric
$h_0$
of
$V$
such that (i)
$h_0$
is compatible with
$C$
and (ii) the decomposition
$V=\bigoplus V_i$
is orthogonal with respect to
$h_0$
.
For any Hermitian metric
$h$
of
$V$
compatible with
$C$
, let
$s(h_0,h)$
be the automorphism of
$V$
determined by the condition
$h(u,v)=h_0(s(h_0,h)u,v)$
for any
$u,v\in V$
. Note that
$\det (s(h_0,h))=1$
. Let
$\mathcal{H}(C;\epsilon )$
be the set of Hermitian metrics
$h$
of
$V$
compatible with
$C$
such that the following holds for any
$u\in V_i$
,
$v\in V_j$
$(i\neq j)$
:

Lemma 3.2.
There exists
$C\gt 0$
, depending only on
$r$
, such that the following holds for any
$0\leqslant \epsilon \leqslant (2r)^{-1}$
and any
$h\in \mathcal{H}(C;\epsilon )$
:

Proof.
Let
$e_i$
be a base of
$V_i$
such that
$C(e_i,e_i)=1$
. Note that the tuple
$(e_1,\ldots, e_r)$
is an orthonormal base with respect to
$h_0$
. Let
$H$
be the matrix determined by
$H_{i,j}=h(e_i,e_j)$
. Then, the linear map
$s(h_0,h)$
is represented by the matrix
${}^{t}\!H$
with respect to the base
$(e_1,\ldots, e_r)$
. Because
$h$
is compatible with
$C$
,
${}^{t}\!H\cdot H$
is the identity matrix. We obtain

By condition (4), we have
$|H_{i,j}| \leqslant \epsilon H_{i,i}^{1/2}H_{j,j}^{1/2}$
for
$i\neq j$
. We obtain

We set
$A=\sum _{j=1}^r H_{j,j}$
. We obtain

Lemma 3.3. The following holds:
$H_{i,i}\leqslant \epsilon A+1$
.
Proof.
Let
$a\gt 0$
. Let us consider the
$\mathbb{R}$
-valued function
$f(s)=s^2-as-1$
$(s\in \mathbb{R})$
. We set
$s_{\pm }=2^{-1}(a\pm \sqrt{a^2+4})$
, and then we have
$f(s_{\pm })=0$
and
$s_-\lt s_+$
. We obtain
$f(s)\gt 0$
for any
$s\gt s_+$
. Hence, if
$f(s)\leqslant 0$
, we obtain

By setting
$a=\epsilon A$
, we obtain the claim of the lemma from (6) and (7).
We obtain
$A\leqslant \epsilon r A+r$
, and hence
$A\leqslant (1-\epsilon r)^{-1}r\leqslant 2r$
. By (4) and (5), we obtain

Because
$H_{i,i}$
are positive numbers, we obtain
$\bigl |H_{i,i}-1\bigr |\leqslant 4r^2\epsilon$
. We also obtain
$|H_{i,j}|\leqslant \epsilon (1+4r^2\epsilon )$
.
3.2 Harmonic metrics compatible with a non-degenerate symmetric pairing
Let
$Y$
be any Riemann surface. Let
$(V,\overline{\partial }_V,\theta )$
be a Higgs bundle on
$Y$
of rank
$r$
, which is regular semisimple. Let
$C$
be a non-degenerate symmetric pairing of
$(V,\theta )$
.
For any
$t\gt 0$
, let
$\mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
denote the set of harmonic metrics of
$(V,\overline{\partial }_V,t\theta )$
compatible with
$C$
. Let
$g_Y$
be a Kähler metric of
$Y$
. For any non-negative integer
$\ell$
and
$p\gt 1$
, and for any relatively compact open subset
$K$
of
$Y$
, we define the
$L_{\ell }^p$
-norm
$\|f\|_{L_{\ell }^p,K}$
of a section
$f$
of
${\mathop{\textrm{End}}\nolimits }(V)$
on
$K$
by using
$g_Y$
,
$h^C$
and the Chern connection of
$h^C$
. (See Proposition 2.6 for
$h^C$
.)
Theorem 3.4.
Let
$K$
be any relatively compact open subset of
$Y$
. There exists
$t(K)\gt 0$
such that:
-
– for any
$(\ell, p)\in \mathbb{Z}_{\gt 0}\times \mathbb{R}_{\gt 1}$ , there exist
$A(\ell, p,K)\gt 0$ and
$\epsilon (\ell, p,K)\gt 0$ such that, for any
$h\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
$(t\geqslant t(K))$ ,
(8)\begin{align} \bigl \| s(h^C,h)-{\mathop{\textrm{id}}\nolimits }_E \bigr \|_{L_{\ell }^p,K} + \bigl \| s(h^C,h)^{-1}-{\mathop{\textrm{id}}\nolimits }_E \bigr \|_{L_{\ell }^p,K} \leqslant A(\ell, p,K)\exp (-\epsilon (\ell, p,K)t). \end{align}
Proof.
To simplify the description, we set
$s(h):=s(h^C,h)$
in this proof. By [Reference MochizukiMoc16, Corollary 2.6] and Lemma 3.2, there exist
$A(K)\gt 0$
,
$\epsilon (K)\gt 0$
, and
$t(K)\gt 0$
such that the following holds for any
$h\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
$(t\geqslant t(K))$
:

Let
$R(h)$
denote the curvature of the Chern connection of
$(V,\overline{\partial }_V,h)$
. By [Reference MochizukiMoc16, Theorem 2.9], there exist
$A^{(1)}(K)\gt 0$
and
$\epsilon ^{(1)}(K)\gt 0$
such that the following holds for any
$h\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
$(t\geqslant t(K))$
:

Note that
$R(h)=\overline{\partial }_V\bigl (s(h)^{-1}{\partial }_{h^C}s(h)\bigr )$
.
Because
$s(h)$
is self-adjoint with respect to
$h^C$
and satisfies
$\det s(h)=1$
, we have
${\mathop{\textrm{Tr}}\nolimits }(s(h)-{\mathop{\textrm{id}}\nolimits })\geqslant 0$
, and
${\mathop{\textrm{Tr}}\nolimits }(s(h)-{\mathop{\textrm{id}}\nolimits }_V)=0$
holds if and only if
$s(h)={\mathop{\textrm{id}}\nolimits }_V$
. The following holds on
$Y$
(see [Reference SimpsonSim88, Lemma 3.1]):

Let
$K_1$
be a relatively compact open neighbourhood of
$\overline{K}$
in
$Y$
. Let
$\chi :Y\to \mathbb{R}_{\geqslant 0}$
be a function such that
$\chi =1$
on
$\overline{K}$
and
$\chi =0$
on
$Y\setminus K_1$
. We obtain the following:

There exist constants
$A^{(2)}(K)\gt 0$
and
$\epsilon ^{(2)}(K)\gt 0$
such that the following holds for any
$h\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
$(t\geqslant t(K))$
:

By (10) and (11), there exist
$A^{(3)}(p,K)\gt 0$
and
$\epsilon ^{(3)}(p,K)\gt 0$
such that the following holds for any
$h\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
$(t\geqslant t(K))$
:

By (9) and (12), there exist
$A^{(4)}(p,K)\gt 0$
and
$\epsilon ^{(4)}(p,K)\gt 0$
such that the following holds for any
$h\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
$(t\geqslant t(K))$
:

By (12) and (13), there exist
$A^{(5)}(p,K)\gt 0$
and
$\epsilon ^{(5)}(p,K)\gt 0$
such that the following holds for any
$h\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t\theta, C)$
$(t\geqslant t(K))$
:

Then, by using a standard bootstrapping argument, we obtain the claim of the theorem.
Corollary 3.5.
Let
$t(i)\gt 0$
be any sequence such that
$\lim _{i\to \infty } t(i)=\infty$
. For each
$t(i)$
, we take any
$h_{t(i)}\in \mathop{\textrm{Harm}}\nolimits (V,\overline{\partial }_V,t(i)\theta, C)$
. Then, the sequence
$h_{t(i)}$
is convergent to
$h^C$
in the
$C^{\infty }$
-sense on any relatively compact open subsets of
$Y$
. The order of the convergence is estimated as in (
8
).
4. Some estimates for harmonic bundles on a disc
This section is a preliminary for Theorem7.17.
4.1 Universal boundedness of higher derivatives of Higgs fields
For any
$R\gt 0$
, we set
$B(R)=\bigl \{z\in \mathbb{C}\,\big |\,|z|\lt R\bigr \}$
. Let
$R_0\gt 0$
. Let
$(E,\overline{\partial }_E,\theta )$
be a Higgs bundle on
$B(R_0)$
of rank
$r$
. Let
$f$
be the endomorphism of
$E$
determined by
$\theta =f\,dz$
. Let
$C_0$
be a constant such that

Let
$h$
be a harmonic metric of
$(E,\overline{\partial }_E,\theta )$
. Let
$\nabla _h$
denote the Chern connection of
$h$
. Let
$R(h)$
denote the curvature of
$\nabla _h$
. We obtain the endomorphism
$\mathfrak R$
determined by
$R(h)=\mathfrak R\,dz\,d{\overline{z}}$
. Let
$f^{\dagger }_h$
denote the adjoint of
$f$
with respect to
$h$
. Because
$R(h)+[\theta, \theta ^{\dagger }_h]=0$
, we have
$\mathfrak R+[f,f^{\dagger }_h]=0$
.
Let
$g_0=dz\,d{\overline{z}}$
denote the standard Euclidean metric. We consider the
$L_{\ell }^p$
-norm of sections of
${\mathop{\textrm{End}}\nolimits }(E)$
with respect to
$g_0$
and
$h$
, and the derivatives with respect to
$\nabla _h$
.
Proposition 4.1.
Let
$0\lt R_1\lt R_0$
. For any
$\ell \in \mathbb{Z}_{\geqslant 0}$
and
$p\geqslant 1$
, there exist
$C(\ell, p)$
, depending only on
$r$
,
$R_0$
,
$R_1$
and
$C_0$
, such that

Proof.
Let
$R_2=(R_0+R_1)/2$
. By Simpson’s main estimate [Reference SimpsonSim90, Reference SimpsonSim92], there exists
$C_1$
, depending only on
$r$
,
$R_0$
,
$R_1$
and
$C_0$
, such that
$|f|_{h}=|f^{\dagger }_h|_h\leqslant C_1$
on
$B(R_2)$
. We also obtain
$|R(h)|_{h,g_0}=|\mathfrak R|_{h}\leqslant 2C_1^2$
on
$B(R_2)$
.
We recall a result due to Uhlenbeck.
Theorem 4.2 [Reference UhlenbeckUhl82, Theorem 1.3]. Let
$V$
be a vector bundle on
$B(1)$
equipped with a Hermitian metric
$h_V$
and a unitary connection
$\nabla _V$
. Let
$R(\nabla _V)$
denote the curvature of
$\nabla _V$
. For
$p\geqslant 1$
, let
$\|R(\nabla _V)\|_{L^p,h_V}$
denote the
$L^p$
-norm with respect to
$g_0$
and
$h_V$
. Then, there exist positive constants
$c$
and
$\kappa$
depending only on
$r$
and
$p$
such that the following holds.
-
– If
$\|R(\nabla _V)\|_{L^p,h_V}\leqslant \kappa$ , then there exists an orthonormal frame
$\boldsymbol{v}$ of
$V$ such that the connection form
$A$ of
$\nabla _V$ with respect to
$\boldsymbol{v}$ satisfies (i)
$d^{\ast }A=0$ and (ii)
$\|A\|_{L_1^p}\leqslant c\|R(\nabla _V)\|_{L^p}$ .
We choose
$T\gt 0$
such that
$100T^{-1}C_1^2\lt \kappa$
and
$T(R_0-R_2)\gt 100$
. Let
$\varphi _T:\mathbb{C}_w\to \mathbb{C}_z$
be defined by
$\varphi _T(w)=T^{-1}z$
. We consider
$(\widetilde{E},\overline{\partial }_{\widetilde{E}},\widetilde{\theta },\widetilde{h}) =\varphi _T^{\ast }(E,\overline{\partial }_E,\theta, h)$
on
$B(TR_0)$
. Let
$w_0\in B(TR_2-1)$
. Let
$p\gt 2$
. Let
$\boldsymbol{v}^{(w_0)}$
be an orthonormal frame of
$\widetilde{E}_{|D(w_0,1)}$
as in Theorem4.2 for the metric
$\widetilde{h}$
and the connection
$\nabla _{\widetilde{h}}$
. Let
$\mathcal{A}^{(w_0)}$
and
$\mathcal{R}^{(w_0)}$
denote the connection form and the curvature form of
$\nabla _{\widetilde{h}}$
with respect to
$\boldsymbol{v}^{(w_0)}$
. We have


Let
$\Theta ^{(w_0)}$
denote the matrix-valued
$(1,0)$
-form determined by
$\widetilde{\theta }\boldsymbol{v}^{(w_0)}=\boldsymbol{v}^{(w_0)}\Theta ^{(w_0)}$
. We have the decomposition
$\mathcal{A}^{(w_0)}=\mathcal{A}^{(w_0)}_w\,dw+ \mathcal{A}^{(w_0)}_{\overline{w}}\,d\overline{w}$
. We have
$\mathcal{A}^{(w_0)}_{w}= -{}^{t}\!\overline{\mathcal{A}^{(w_0)}_{\overline{w}}}$
. Because
$\overline{\partial }\widetilde{\theta }=0$
, the following holds:

We also have

Then, by a standard bootstrapping argument, we can prove that for any
$\ell$
there exists
$C_2(\ell )$
, depending only on
$\ell$
and
$r$
such that

We obtain a desired estimate for
$\|f_{|B(R_1)}\|_{L_{\ell }^p}$
, which implies a desired estimate for
$\|f^{\dagger }_{h|B(R_1)}\|_{L_{\ell }^p}$
. Because
$\mathfrak R+[f,f^{\dagger }_h]=0$
, we also obtain a desired estimate for
$\|\mathfrak R_{|B(R_1)}\|_{L_{\ell }^p}$
.
4.2 Difference of two families of large-scale solutions on a disc
Let
$R_0\gt 0$
. Let
$(E,\overline{\partial }_E,\theta )$
be a Higgs bundle on
$B(R_0)$
of rank
$r$
. Let
$f$
be the endomorphism of
$E$
determined by
$\theta =f\,dz$
. Let
$C_0$
be a constant such that

Let
$h_{\det (E)}$
be a flat metric of
$\det (E)$
. Let
$h_{0,t}$
$(t\gt 0)$
be harmonic metrics of
$(E,\overline{\partial }_E,t\theta )$
such that
$\det (h_{0,t})=h_{\det (E)}$
. Let
$\nabla ^{0,t}$
denote the Chern connection of
$(E,\overline{\partial }_E,h_{0,t})$
. For any section
$u$
of
${\mathop{\textrm{End}}\nolimits }(E)$
and for any element
$\boldsymbol{\kappa }=(\kappa _1,\kappa _2,\ldots, \kappa _{\ell }) \in \{z,{\overline{z}}\}^{\ell }$
, we set

Theorem 4.3.
Let
$0\lt R_1\lt R_0$
. Let
$C_1,\epsilon _1\gt 0$
. For any
$\ell \in \mathbb{Z}_{\geqslant 0}$
, there exist positive constants
$C(\ell ),\epsilon (\ell )\gt 0$
, depending only on
$r$
,
$C_0,C_1,\epsilon _1$
and
$\ell$
such that the following holds.
-
– Let
$t(i)\gt 0$ be an increasing sequence such that
$t(i)\to \infty$ as
$i\to \infty$ . We also assume that
$t(1)(R_0-R_1)\gt 100$ . Let
$h_{t(i)}$ be harmonic metrics of
$(E,\overline{\partial }_E,t(i)\theta )$ such that
$\det (h_{t(i)})=h_{\det (E)}$ . Assume the following on
$B(R_0)\setminus B(R_1)$ :
(19)Then, the following holds on\begin{align} \bigl |s(h_{0,t(i)},h_{t(i)})-{\mathop{\textrm{id}}\nolimits } \bigr |_{h_{0,t(i)}} \leqslant C_1\exp (-\epsilon _1t(i)). \end{align}
$B(R_1)$ for any
$\boldsymbol{\kappa }\in \{z,{\overline{z}}\}^{\ell }$ :
\begin{align*} \Bigl | \nabla ^{0,t(i)}_{\boldsymbol {\kappa }}\bigl ( s(h_{0,t(i)},h_{t(i)})-{\mathop {\textrm {id}}\nolimits } \bigr ) \Bigr |_{h_{0,t(i)}} \leqslant C(\ell ) \exp \bigl (-\epsilon (\ell )t(i)\bigr ). \end{align*}
4.2.1 The case
$\ell =0$
To simplify the notation we set
$s_i=s(h_{0,t(i)},h_{t(i)})$
. By (19), there exist
$C'(0),\epsilon '(0)\gt 0$
, depending only on
$r$
,
$C_1$
and
$\epsilon _1$
, such that the following holds on
$B(R_0)\setminus B(R_1)$
:

By [Reference SimpsonSim88, Lemma 3.1], we have

In particular,
${\mathop{\textrm{Tr}}\nolimits }\bigl (s_i-{\mathop{\textrm{id}}\nolimits }_E\bigr )$
is a subharmonic function on
$B(R_0)$
. By the maximum principle of subharmonic functions, (20) holds on
$B(R_0)$
. Because
$\det (s_i)=1$
, we obtain the claim in the case
$\ell =0$
.
4.2.2 Estimates for
$L^2$
-norms
We set
$R_2=(R_0+R_1)/2$
and
$R_3=(R_0+R_2)/2$
. Let
$\chi :\mathbb{C}\to \mathbb{R}_{\geqslant 0}$
be a
$C^{\infty }$
-function such that
$\chi (z)=1$
$(|z|\leqslant R_2)$
and
$\chi (z)=0$
$(|z|\geqslant R_3)$
. Let
$g_z=dz\,d{\overline{z}}$
be the standard Euclidean metric. By using [Reference SimpsonSim88, Lemma 3.1], we obtain

Hence, there exist
$C_5\gt 0,\epsilon _5\gt 0$
such that

4.2.3 Rescaling
To study the derivatives, for any
$t\gt t(1)$
, we define the map
$\rho _t:\mathbb{C}_w\to \mathbb{C}_z$
by
$\rho _t(w)=t^{-1}w$
. We have
$\rho _t^{-1}(B(R))=B(tR)$
. We use the standard Euclidean metric
$g_w=dw\,d\overline{w}$
on
$\mathbb{C}_w$
.
We set
$\widetilde{E}_{t}=\rho _t^{\ast }(E)$
on
$B(tR_0)$
. It is equipped with the Higgs field
$\widetilde{\theta }_t=\rho _t^{\ast }(t\theta )$
. We have
$\widetilde{\theta }_t=\rho _t^{\ast }(f)\,dw$
. We have the harmonic metrics
$\widetilde{h}_{0,t}=\varphi _t^{\ast }(h_{0,t})$
of the Higgs bundles
$(\widetilde{E}_t,\overline{\partial }_{\widetilde{E}_t},\widetilde{\theta }_t)$
. Let
$\widetilde{\nabla }^{0,t}$
denote the Chern connection of
$(\widetilde{E}_t,\overline{\partial }_{\widetilde{E}_t},\widetilde{h}_{0,t})$
.
By Simpson’s main estimate, there exists
$C_{10}\gt 0$
, depending only on
$r$
and
$C_0$
, such that the following holds on
$B(tR_0-1)$
:

Let
$R(\widetilde{h}_{0,t})$
denote the curvature of the Chern connection of
$(\widetilde{E}_{t},\overline{\partial }_{\widetilde{E}_{t}}, \widetilde{h}_{0,t})$
. We have the following equality:

By (24) and (25), we have the following on
$B(tR_0-1)$
:

We also have the universal estimates for higher derivatives of
$\widetilde{\theta }$
and
$R(\widetilde{h}_{0,t})$
as in Proposition 4.1.
4.2.4 Estimates for higher derivatives
We also have the harmonic metrics
$\widetilde{h}_{t(i)}=\varphi _{t(i)}^{\ast }(h_{t(i)})$
of
$(\widetilde{E}_{t(i)},\overline{\partial }_{\widetilde{E}_{t(i)}},\widetilde{\theta }_{t(i)})$
. Let
$\widetilde{s}_i=\varphi _{t(i)}^{\ast }(s_i)$
. We have
$\widetilde{h}_{t(i)}=\widetilde{h}_{0,t(i)}\widetilde{s}_i$
. By (23), we have

This implies

Let
$R(\widetilde{h}_{t(i)})$
denote the curvature of the Chern connection of
$(\widetilde{E}_{t(i)},\overline{\partial }_{\widetilde{E}_{t(i)}},\widetilde{h}_{t(i)})$
. We have

Note that

We obtain

Hence, there exist
$C_{11}\gt 0$
and
$\epsilon _{11}\gt 0$
such that the following holds on
$B(t(i)R_0-1)$
:

For any
$w_0\in \mathbb{C}_w$
, we set
$D(w_0,T)=\{|w-w_0|\lt T\}$
. By (26), (28) and (30), for any
$p\geqslant 2$
, there exist
$C_{12}(p)\gt 0,\epsilon _{12}(p)\gt 0$
such that the following holds for any
$w_0\in B(t(i)R_2-1)$
:

By (31) and the estimate in the case
$\ell =0$
, for any
$p\gt 1$
, there exist
$C_{13}(p)\gt 0,\epsilon _{13}(p)\gt 0$
such that the following holds for any
$w_0\in B(t(i)R_2-1)$
:

By a standard bootstrapping argument, for any
$p\gt 1$
and
$\ell \in \mathbb{Z}_{\geqslant 2}$
, there exist
$C_{14}(\ell, p)\gt 0,\epsilon _{14}(\ell, p)\gt 0$
such that the following holds for any
$w_0\in B(t(i)R_2-1)$
:

Then, we obtain the claim of Theorem4.3.
5. Decomposable filtered extensions
5.1 Meromorphic extensions and filtered extensions
5.1.1 Vector bundles
Let
$U\subset \mathbb{C}$
be a simply connected open neighbourhood of
$0$
. We set
$U^{\ast }=U\setminus \{0\}$
. Let
$\iota :U^{\ast }\to U$
denote the inclusion. Let
$V$
be a locally free
$\mathcal{O}_{U^{\ast }}$
-module of rank
$r$
. We obtain a locally free
$\iota _{\ast }\mathcal{O}_{U^{\ast }}$
-module
$\iota _{\ast }(V)$
. A meromorphic (respectively smooth) extension of
$V$
is defined to be a locally free
$\mathcal{O}_{U}(\ast 0)$
-submodule (respectively
$\mathcal{O}_U$
-submodule)
$\mathcal{V}\subset \iota _{\ast }(V)$
such that
$\mathcal{V}_{|U^{\ast }}=V$
. A filtered extension of
$V$
is defined to be a meromorphic extension
$\mathcal{V}$
equipped with a filtered bundle
$\mathcal{P}_{\ast }(\mathcal{V})$
over
$\mathcal{V}$
.
Example 5.1. The
$\mathcal{O}_U(\ast 0)$
-submodule
$\mathcal{O}_U(\ast 0)\exp (z^{-1})\subset \iota _{\ast }(\mathcal{O}_{U^{\ast }})$
is a meromorphic extension of
$\mathcal{O}_{U^{\ast }}$
, which is different from
$\mathcal{O}_U(\ast 0)\subset \iota _{\ast }(\mathcal{O}_{U^{\ast }})$
.
For a positive integer
$\ell$
, let
$\varphi _{\ell }:\mathbb{C}\to \mathbb{C}$
be defined by
$\varphi _{\ell }(\zeta )=\zeta ^{\ell }$
. We set
$U^{(\ell )}=\varphi _{\ell }^{-1}(U)$
and
$U^{(\ell )\ast }=U^{(\ell )}\setminus \{0\}$
. The induced morphisms
$U^{(\ell )}\to U$
and
$U^{(\ell )\ast }\to U^{\ast }$
are also denoted by
$\varphi _{\ell }$
. Let
$\mathop{\textrm{Gal}}\nolimits (\ell )$
denote the Galois group of the ramified covering
$\varphi _{\ell }$
. Namely, we put
$\mathop{\textrm{Gal}}\nolimits (\ell )=\{a\in \mathbb{C}^{\ast }\,|\,a^{\ell }=1\}$
, and we consider the action of
$\mathop{\textrm{Gal}}\nolimits (\ell )$
on
$U^{(\ell )}$
by the multiplication on the coordinate
$\zeta$
. Let
$\iota ^{(\ell )}:U^{(\ell )\ast }\to U^{(\ell )}$
denote the inclusion. We set
$V^{(\ell )}:=\varphi _{\ell }^{\ast }(V)$
, which is naturally
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant. The
$(\iota ^{(\ell )})_{\ast }\mathcal{O}_{U^{(\ell )\ast }}$
-module
$(\iota ^{(\ell )})_{\ast }(V^{(\ell )})$
is also
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant. A
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant meromorphic extension of
$V^{(\ell )}$
is defined to be a locally free
$\mathcal{O}_{U^{(\ell )}}(\ast 0)$
-submodule
$\mathcal{V}^{(\ell )}\subset \iota ^{(\ell )}_{\ast }(V^{(\ell )})$
which is preserved by the
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-action. A
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant filtered extension of
$V^{(\ell )}$
is defined to be a filtered bundle
$\mathcal{P}_{\ast }(\mathcal{V}^{(\ell )})$
over a
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant meromorphic extension
$\mathcal{V}^{(\ell )}$
of
$V^{(\ell )}$
such that each
$\mathcal{P}_{a}\mathcal{V}^{(\ell )}$
is preserved by the
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-action.
A meromorphic extension
$\mathcal{V}$
of
$V$
induces a
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant meromorphic extension
$\varphi _{\ell }^{\ast }(\mathcal{V})$
of
$V^{(\ell )}$
. Conversely, for any
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant meromorphic extension
$\mathcal{V}^{(\ell )}$
of
$V^{(\ell )}$
, we obtain the
$\mathcal{O}_{U}(\ast 0)$
-module
$\varphi _{\ell \ast }(\mathcal{V}^{(\ell )})$
equipped with the
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-action. The
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-invariant part
$\varphi _{\ell \ast }(\mathcal{V}^{(\ell )})^{\mathop{\textrm{Gal}}\nolimits (\ell )}$
is called the descent of
$\mathcal{V}^{(\ell )}$
which is a meromorphic extension of
$V$
.
Lemma 5.2.
For a meromorphic extension
$\mathcal{V}$
of
$V$
, the descent of
$\varphi _{\ell }^{\ast }(\mathcal{V})$
equals
$\mathcal{V}$
. For a
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant meromorphic extension
$\mathcal{V}^{(\ell )}$
of
$V^{(\ell )}$
,
$\varphi _{\ell }^{\ast }\bigl ( \varphi _{\ell \ast }(\mathcal{V}^{(\ell )})^{\mathop{\textrm{Gal}}\nolimits (\ell )} \bigr )$
equals
$\mathcal{V}^{(\ell )}$
. These procedures induce an equivalence between meromorphic extensions of
$V$
and
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant meromorphic extensions of
$V^{(\ell )}$
.
For a filtered extension
$\mathcal{P}_{\ast }\mathcal{V}$
of
$V$
, we obtain a
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant filtered extension
$\mathcal{P}_{\ast }(\varphi _{\ell }^{\ast }(\mathcal{V}))$
over
$\mathcal{V}^{(\ell )}$
as follows:

The filtered bundle
$\mathcal{P}_{\ast }(\varphi _{\ell }^{\ast }(\mathcal{V}))$
is denoted by
$\varphi _{\ell }^{\ast }(\mathcal{P}_{\ast }\mathcal{V})$
.
For a
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant filtered extension
$\mathcal{P}_{\ast }(\mathcal{V}^{(\ell )})$
of
$V^{(\ell )}$
, we obtain a filtered extension
$\mathcal{P}_{\ast }(\varphi _{\ell \ast }(\mathcal{V}^{(\ell )})^{\mathop{\textrm{Gal}}\nolimits (\ell )})$
as follows:

It is called the descent of
$\mathcal{P}_{\ast }(\mathcal{V}^{(\ell )})$
.
Lemma 5.3.
These procedures induce an equivalence between filtered extensions of
$V$
and
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant filtered extensions of
$V^{(\ell )}$
.
5.1.2 Non-degenerate symmetric pairing
For any
$b\in \mathbb{R}$
, let
$\mathcal{P}^{(b)}_{\ast }(\mathcal{O}_U(\ast 0))$
denote the filtered bundle over
$\mathcal{O}_U(\ast 0)$
defined by

Here, we set
$[c]:=\max \{n\in \mathbb{Z}\,|\,n\leqslant c\}$
for any
$c\in \mathbb{R}$
.
Let
$C:V\otimes V\to \mathcal{O}_{U^{\ast }}$
be a holomorphic non-degenerate symmetric pairing. We say that a meromorphic extension
$\mathcal{V}$
is compatible with
$C$
if
$C$
extends to a pairing
$\mathcal{V}\otimes \mathcal{V}\to \mathcal{O}_{U}(\ast 0)$
. We say that a filtered extension
$\mathcal{P}_{\ast }\mathcal{V}$
is compatible with
$C$
if
$C$
induces
$\mathcal{P}_{\ast }\mathcal{V}\otimes \mathcal{P}_{\ast }\mathcal{V} \to \mathcal{P}^{(0)}_{\ast }(\mathcal{O}_U(\ast 0))$
. We say that
$C$
is perfect with respect to
$\mathcal{P}_{\ast }\mathcal{V}$
if
$C$
induces an isomorphism
$\mathcal{P}_{\ast }(\mathcal{V})\simeq \mathcal{P}_{\ast }(\mathcal{V}^{\lor })$
.
We have the induced symmetric pairing
$\det (C)$
of
$\det (V)$
. If
$\mathcal{V}$
(respectively
$\mathcal{P}_{\ast }\mathcal{V}$
) is compatible with
$C$
, then
$\det (\mathcal{V})$
(respectively
$\det (\mathcal{P}_{\ast }\mathcal{V})$
) is compatible with
$\det (C)$
.
Lemma 5.4 [Reference Li and MochizukiLM10b]. Suppose that
$\mathcal{P}_{\ast }\mathcal{V}$
is compatible with
$C$
. Then,
$C$
is perfect with respect to
$\mathcal{P}_{\ast }(\mathcal{V})$
if and only if
$\det (C)$
is perfect with respect to
$\det (\mathcal{P}_{\ast }\mathcal{V})$
.
Lemma 5.5.
There exists a unique meromorphic extension
$\mathcal{L}$
of
$\det (V)$
which is compatible with
$\det (C)$
. There exists a unique filtered bundle
$\mathcal{P}^{C}_{\ast }\mathcal{L}$
over
$\mathcal{L}$
such that
$\det (C)$
is perfect with respect to
$\mathcal{P}^C_{\ast }\mathcal{L}$
.
Proof.
We may assume that
$U$
is a disc. Let
$v_0$
be a frame of
$\det (V)$
on
$U^{\ast }$
. We obtain a holomorphic function
$(\det C)(v_0,v_0)$
on
$U^{\ast }$
. There exist an integer
$k$
and a holomorphic function
$g_1$
such that
$(\det C)(v_0,v_0)=z^{-k}\exp (g_1)$
. We obtain a frame
$v_1=\exp (-g_1/2)v_0$
of
$\det (V)$
on
$U^{\ast }$
. We set
$\mathcal{L}=\mathcal{O}_{U}(\ast 0)v_1 \subset \iota _{\ast }(\det V)$
. Then,
$\mathcal{L}$
is compatible with
$\det (C)$
.
We have
$\det (C)(v_1,v_1)=z^{-k}$
. We define

Then,
$\mathcal{P}^C_{\ast }\mathcal{L}$
satisfies the desired condition. The uniqueness is clear.
We set
$C^{(\ell )}:=\varphi _{\ell }^{\ast }C$
which is a non-degenerate symmetric pairing of
$V^{(\ell )}$
.
Lemma 5.6.
$\mathcal{V}$
(respectively
$\mathcal{P}_{\ast }\mathcal{V}$
) is compatible with
$C$
if and only if
$\varphi _{\ell }^{\ast }(\mathcal{V})$
(respectively
$\varphi _{\ell }^{\ast }(\mathcal{P}_{\ast }\mathcal{V})$
) is compatible with
$C^{(\ell )}$
. When
$\mathcal{P}_{\ast }\mathcal{V}$
and
$C$
are compatible,
$C$
is perfect with respect to
$\mathcal{P}_{\ast }\mathcal{V}$
if and only if
$C^{(\ell )}$
is perfect with respect to
$\varphi _{\ell }^{\ast }(\mathcal{P}_{\ast }\mathcal{V})$
.
5.1.3 Higgs bundles
Let
$\theta$
be a Higgs field of
$V$
, i.e.
$\theta :V\to V\otimes \Omega ^1_{U^{\ast }}$
. We obtain
$\iota _{\ast }(\theta ):\iota _{\ast }(V)\to \iota _{\ast }(V)\otimes \Omega ^1_{U}$
. A meromorphic (respectively smooth) extension of
$(V,\theta )$
is defined to be a meromorphic (respectively smooth) extension
$\mathcal{V}$
of
$V$
such that
$\iota _{\ast }(\theta )(\mathcal{V})\subset \mathcal{V}\otimes \Omega ^1_U$
. The induced Higgs field of
$\mathcal{V}$
is denoted by
$\theta$
. A filtered extension of
$(V,\theta )$
is defined to be a filtered extension
$\mathcal{P}_{\ast }(\mathcal{V})$
over a meromorphic extension
$\mathcal{V}$
of
$(V,\theta )$
. A filtered extension
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is said to be regular (respectively good, unramifiedly good) if
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is a regular (respectively good, unramifiedly good) filtered Higgs bundle. (See [Reference MochizukiMoc21, §2.4] for the notion of good filtered Higgs bundles and unramifiedly good filtered Higgs bundles.)
Lemma 5.7.
Let
$f$
be the endomorphism of
$V$
defined by
$\theta =f\,dz/z$
. Let
$a_j(z)$
be the holomorphic functions on
$U^{\ast }$
obtained as the coefficients of the characteristic polynomial
$\det (t{\mathop{\textrm{id}}\nolimits }_V-f)=\sum _{j=0}^r a_j(z)t^j$
.
-
– A meromorphic extension of
$(V,\theta )$ exists if and only if the Higgs bundle
$(V,\theta )$ is wild, i.e.
$a_j(z)$ are meromorphic at
$z=0$ . In that case, there exists a good filtered extension.
-
– A regular filtered extension exists if and only if
$(V,\theta )$ is tame, i.e.
$a_j(z)$ are holomorphic at
$z=0$ .
We obtain the Higgs field
$\theta ^{(\ell )}$
of
$V^{(\ell )}$
. The following lemmas are clear.
Lemma 5.8.
The pull back and the descent induce an equivalence between meromorphic extensions of
$(V,\theta )$
and
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant meromorphic extensions of
$(V^{(\ell )},\theta ^{(\ell )})$
.
Lemma 5.9.
The pull back and the descent induce an equivalence between regular (respectively good) filtered extensions of
$(V,\theta )$
and
$\mathop{\textrm{Gal}}\nolimits (\ell )$
-equivariant regular (respectively good) filtered meromorphic extensions of
$(V^{(\ell )},\theta ^{(\ell )})$
.
5.2 Decomposable filtered extensions of regular semisimple Higgs bundles
5.2.1 Decomposable filtered extensions
We continue to use the notation in §5.1.1. Let
$(V,\theta )$
be a regular semisimple Higgs bundle on
$U^{\ast }$
. Assume that
$\theta$
is wild. There exist
$\ell \in \mathbb{Z}_{\gt 0}$
and the decomposition

where
$\mathop{\textrm{rank}}\nolimits V_i=1$
, and
$\theta _i-\theta _j$
$(i\neq j)$
are nowhere vanishing on
$U^{(\ell )\ast }$
. Let
$\mathcal{V}$
be a meromorphic extension of
$(V,\theta )$
. The decomposition (34) extends to

where each
$\mathcal{V}_i$
is a meromorphic extension of
$V_i$
.
Definition 5.10. A filtered bundle
$\mathcal{P}_{\ast }\mathcal{V}$
over
$\mathcal{V}$
is called a decomposable filtered extension of
$(V,\theta )$
if the filtered bundle
$\varphi _{\ell }^{\ast }(\mathcal{P}_{\ast }\mathcal{V})$
is compatible with the decomposition (35), i.e. the following holds for any
$a\in \mathbb{R}$
:

Such a
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is called a decomposable filtered Higgs bundle.
The following lemma is obvious by definition.
Lemma 5.11.
Suppose that
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is decomposable:
-
–
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$ is a good filtered Higgs bundle;
-
– any decomposition
$(\mathcal{V},\theta )_{|U^{\ast }} =(V_1,\theta _1)\oplus (V_2,\theta _2)$ extends to a decomposition
$(\mathcal{P}_{\ast }\mathcal{V},\theta ) =(\mathcal{P}_{\ast }\mathcal{V}_1,\theta _1)\oplus (\mathcal{P}_{\ast }\mathcal{V}_2,\theta _2)$ such that
$\mathcal{V}_{i|U^{\ast }}=V_i$ .
5.2.2 Filtered line bundles and decomposable filtered Higgs bundles
There exists the decomposition

such that
$\Sigma _{V^{[k]},\theta ^{[k]}}$
are connected. We set
$r_k=\mathop{\textrm{rank}}\nolimits V^{[k]}$
. For each
$k$
, there exists the decomposition of the Higgs bundle

where
$\mathop{\textrm{rank}}\nolimits V^{[k]}_i=1$
, and
$\theta ^{[k]}_i$
are
$1$
-forms such that
$\theta ^{[k]}_i-\theta ^{[k]}_j$
$(i\neq j)$
are nowhere vanishing on
$U^{(r_k)\ast }$
. A decomposable filtered extension
$\mathcal{P}_{\ast }\mathcal{V}$
of
$(V,\theta )$
induces filtered extensions
$\mathcal{P}_{\ast }(\mathcal{V}^{[k]}_i)$
of
$(V^{[k]}_i,\theta ^{[k]}_i)$
. Note that
$\mathcal{P}_{\ast }(\mathcal{V}^{[k]}_i) =\sigma ^{\ast }\mathcal{P}_{\ast }(\mathcal{V}^{[k]}_1)$
for
$\sigma \in \mathop{\textrm{Gal}}\nolimits (r_k)$
such that
$\sigma ^{\ast }\theta ^{[k]}_1=\theta ^{[k]}_i$
. Conversely, a filtered extension
$\mathcal{P}_{\ast }\mathcal{V}^{[k]}_1$
of
$V^{[k]}_1$
induces a
$\mathop{\textrm{Gal}}\nolimits (r_k)$
-equivariant filtered extension
$\bigoplus _{\sigma \in \mathop{\textrm{Gal}}\nolimits (r_k)} \sigma ^{\ast }\mathcal{P}_{\ast }\mathcal{V}^{[k]}_1$
of
$\varphi _{r_k}^{\ast }(V^{[k]})=\bigoplus _{i=1}^{r_k} V^{[k]}_i$
, and hence a decomposable filtered extension
$\mathcal{P}_{\ast }\mathcal{V}^{[k]}$
of
$(V^{[k]},\theta ^{[k]})$
. Thus, we obtain a decomposable filtered extension
$\bigoplus _{k\in S}\mathcal{P}_{\ast }\mathcal{V}^{[k]}$
of
$(V,\theta )$
. Note that
$\mathcal{P}_{\ast }\mathcal{V}^{[k]}$
is also obtained as
$(\varphi _{r_k})_{\ast }(\mathcal{P}_{\ast }\mathcal{V}^{[k]}_1)$
by the natural identification
$(\varphi _{r_k})_{\ast }(V^{[k]}_1)=V^{[k]}$
. The following proposition is easy to see.
Proposition 5.12.
This procedure induces an equivalence between decomposable filtered extensions of
$(V,\theta )$
and a tuple of filtered extensions of
$V^{[k]}_1$
$(k\in S)$
.
5.2.3 Decomposable filtered extension determined by determinant bundles
Let
$\mathcal{V}$
be a meromorphic extension of
$(V,\theta )$
. The decomposition (36) extends to a decomposition

The decomposition (35) extends to a decomposition

Proposition 5.13.
For a tuple of filtered bundles
$\mathcal{P}_{\ast }\det (\mathcal{V}^{[k]})$
over
$\det (\mathcal{V}^{[k]})$
, there uniquely exists a decomposable filtered bundle
$\mathcal{P}^{\star }_{\ast }(\mathcal{V}) =\bigoplus _{k\in S}\mathcal{P}^{\star }_{\ast }(\mathcal{V}^{[k]})$
over
$\mathcal{V}$
such that
$\det (\mathcal{P}^{\star }_{\ast }\mathcal{V}^{[k]}) =\mathcal{P}_{\ast }\det (\mathcal{V}^{[k]})$
for any
$k\in S$
. Moreover, the following hold for any
$k\in S$
:
-
–
$\dim \mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}^{\star }}_a(\mathcal{V}^{[k]})\leqslant 1$ for any
$a\in \mathbb{R}$ ;
-
– let
$d_k$ be a real number such that
$\mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}}_{d_k}(\det (\mathcal{V}^{[k]}))\neq 0$ , so then
$\mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}^{\star }}_{a}(\mathcal{V}^{[k]})\neq 0$ if and only if
$r_ka-d_k\in \mathbb{Z}$ (
$r_k$ is odd) or
$r_ka-d_k\in {1 \over 2}\mathbb{Z}\setminus \mathbb{Z}$ (
$r_k$ is even).
-
–
$\mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}^{\star }}_a(\mathcal{V}^{[k]}_i)\neq 0$ if and only if
$a-d_k\in \mathbb{Z}$ (
$r_k$ is odd) or
$a-d_k\in {1 \over 2}\mathbb{Z}$ (
$r_k$ is even).
Proof.
It is enough to consider the case where
$\Sigma _{V,\theta }$
is connected, i.e.
$|S|=1$
. We omit the superscript
$[k]$
and the subscript
$k$
. We set
$(V^{(r)},\theta ^{(r)})=\varphi _r^{\ast }(V,\theta )$
and
$\mathcal{V}^{(r)}=\varphi _{r}^{\ast }(\mathcal{V})$
. There exists the following decomposition of the Higgs bundle on
$U^{(r)\ast }$
:

Here,
$\beta (i)$
are meromorphic functions on
$(U^{(r)},0)$
such that
$\beta (i)-\beta (j)$
$(i\neq j)$
are nowhere vanishing on
$U^{(r)\ast }$
. The decomposition (40) extends to a decomposition on
$U^{(r)}$
:

We have
$\sigma ^{\ast }\mathcal{V}_{\beta (i)} =\mathcal{V}_{\sigma ^{\ast }(\beta (i))}$
for any
$\sigma \in \mathop{\textrm{Gal}}\nolimits (r)$
.
Let
$v_{\beta (1)}$
be a frame of
$\mathcal{V}_{\beta (1)}$
. We obtain frames
$v_{\sigma ^{\ast }(\beta (1))}=\sigma ^{\ast }v_{\beta (1)}$
of
$\mathcal{V}_{\sigma ^{\ast }\beta (1)}$
, and the tuple
$v_{\beta (1)},\ldots, v_{\beta (r)}$
is a frame of
$\mathcal{V}^{(r)}$
. We set

We define the filtered bundles
$\mathcal{P}^{\star }_{\ast }(\mathcal{V}_{\beta (i)})$
as follows:

They are independent of the choice of
$v_{\beta (1)}$
. We set
$\mathcal{P}^{\star }_{\ast }(\mathcal{V}^{(r)}) =\bigoplus \mathcal{P}^{\star }_{\ast }(\mathcal{V}_{\beta (i)})$
, which is
$\mathop{\textrm{Gal}}\nolimits (r)$
-equivariant. As the descent, we obtain a filtered bundle
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
over
$\mathcal{V}$
, which satisfies the desired condition. The uniqueness is clear. By the construction,
$(\mathcal{P}^{\star }_{\ast }(\mathcal{V}),\theta )$
is clearly a good filtered Higgs bundle.
Let
$\tau$
be a frame of
$\mathcal{P}_d(\det \mathcal{V})$
. There exist an integer
$m$
and a nowhere vanishing holomorphic function
$g$
on
$U^{(r)}$
such that

Because a generator
$\sigma _0$
of
$\mathop{\textrm{Gal}}\nolimits (r)$
acts on the set
$\{\beta (i)\}$
in a cyclic way, we have
$\sigma _0^{\ast }(v_{\beta (1)}\wedge \cdots \wedge v_{\beta (r)}) =(-1)^{(r-1)}v_{\beta (1)}\wedge \cdots \wedge v_{\beta (r)}$
. Hence, we obtain that
$\sigma _0^{\ast }(\zeta ^m)=(-1)^{r-1}\zeta ^m$
and
$\sigma _0^{\ast }g=g$
. This implies that
$m/r\in \mathbb{Z}$
if
$r$
is odd or that
$m/r\in {1 \over 2}\mathbb{Z}\setminus \mathbb{Z}$
if
$r$
is even. By our choice of
$b$
, we have
$b=-m+rd$
. It is easy to see that
$\mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}^{\star }}_c(\mathcal{V}_{\beta (i)})\neq 0$
if and only if
$c-b/r\in \mathbb{Z}$
. For each
$p\in \mathbb{Z}$
, we have the
$\mathop{\textrm{Gal}}\nolimits (r)$
-invariant sections
$\sum _{\sigma \in \mathop{\textrm{Gal}}\nolimits (r)} \sigma ^{\ast }(\zeta ^pv_{\beta (1)})$
of
$\mathcal{V}^{(r)}$
which induces a section of
$\mathcal{P}^{\star }_{b/r^2-p/r}(\mathcal{V})$
. Moreover, it induces a frame of
$\mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}^{\star }}_{b/r^2-p/r}(\mathcal{V})$
. Hence, it is easy to see that
$\mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}^{\star }}_a(\mathcal{V})\neq 0$
if and only if
$ra-b/r\in \mathbb{Z}$
, and that
$\dim \mathop{\textrm{Gr}}\nolimits ^{\mathcal{P}^{\star }}_a(\mathcal{V})\leqslant 1$
. Then, we obtain the last two claims.
5.3 Non-degenerate pairings and decomposable filtered extensions
5.3.1 Non-degenerate symmetric pairings of regular semisimple Higgs bundles
We continue to use the notation in §5.2. Let
$C$
be a non-degenerate symmetric pairing of
$(V,\theta )$
. For any
$z_0\in U^{\ast }$
, the eigen decomposition of
$\theta$
at
$z_0$
is orthogonal with respect to
$C$
. The decomposition (34) is orthogonal with respect to
$\varphi _{\ell }^{\ast }C$
.
The decomposition (36) is orthogonal with respect to
$C$
. Let
$C^{[k]}$
denote the restriction of
$C$
to
$V^{[k]}$
. The decomposition (37) is orthogonal with respect to
$\varphi _{r_k}^{\ast }C^{[k]}$
. Let
$C^{[k]}_i$
denote the induced symmetric pairing of
$V^{[k]}_i$
. We have
$C^{[k]}_i=\sigma ^{\ast }C^{[k]}_1$
for
$\sigma \in \mathop{\textrm{Gal}}\nolimits (r_k)$
such that
$\sigma ^{\ast }\theta ^{[k]}_1=\theta ^{[k]}_i$
. Conversely, for any non-degenerate symmetric pairings
$C^{[k]}_1$
$(k\in S)$
, we obtain a
$\mathop{\textrm{Gal}}\nolimits (r_k)$
-equivariant non-degenerate symmetric pairing
$\bigoplus _{\sigma \in \mathop{\textrm{Gal}}\nolimits (r_k)} \sigma ^{\ast }C^{[k]}_1$
of
$\varphi _{r_k}^{\ast }V^{[k]}$
. It induces a non-degenerate symmetric pairing
$C^{[k]}$
of
$(V^{[k]},\theta ^{[k]})$
, and a non-degenerate pairing
$\bigoplus C^{[k]}$
of
$(V,\theta )$
. The following lemma is a special case of Proposition 2.5.
Lemma 5.14.
These procedures induce an equivalence between a non-degenerate symmetric pairing
$C$
of
$(V,\theta )$
and a tuple
$(C^{[k]}_1)_{k\in S}$
of non-degenerate symmetric pairings of
$V^{[k]}_1$
.
5.3.2 Canonical decomposable filtered extensions in the symmetric case
We recall the following [Reference Li and MochizukiLM10b, §4.1].
Proposition 5.15.
For a non-degenerate symmetric pairing
$C$
of
$(V,\theta )$
, there uniquely exists a meromorphic extension
$\mathcal{V}^C$
of
$(V,\theta )$
compatible with
$C$
. Moreover, there uniquely exists a filtered bundle
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$
over
$\mathcal{V}^C$
satisfying the following conditions:
-
–
$C$ is perfect with respect to
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$ ;
-
–
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$ is a decomposable filtered extension of
$(V,\theta )$ .
We have the non-degenerate symmetric pairing
$C^{[k]}_1$
$(k\in S)$
of
$V^{[k]}_1$
corresponding to
$C$
as in Lemma 5.14. There exist unique filtered extensions
$\mathcal{P}^C_{\ast }\bigl ((\mathcal{V}^{[k]}_1)^C\bigr )$
of
$V^{[k]}_1$
compatible with
$C^{[k]}_1$
as in Lemma 5.5. The decomposable filtered extension
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$
of
$(V,\theta )$
corresponds to the tuple
$\mathcal{P}^C_{\ast }\bigl ((\mathcal{V}^{[k]}_1)^C\bigr )$
$(k\in S)$
(Proposition 5.12).
5.3.3 Comparison of two canonical extensions
Let
$C$
be a non-degenerate symmetric pairing of
$(V,\theta )$
. We have the unique filtered extension
$\mathcal{P}^C_{\ast }\mathcal{V}^C$
of
$(V,\theta )$
compatible with
$C$
. We have the decomposition

Let
$\det (C^{[k]})$
denote the induced symmetric pairings of
$(\det (V^{[k]}),{\mathop{\textrm{tr}}\nolimits }(\theta ^{[k]}))$
. Note that
$\det ((\mathcal{V}^C)^{[k]})$
is a meromorphic extension of
$(\det (V^{[k]}),{\mathop{\textrm{tr}}\nolimits }(\theta ^{[k]}))$
compatible with
$\det (C^{[k]})$
. We have the unique filtered extension
$\mathcal{P}^C_{\ast }\det ((\mathcal{V}^C)^{[k]})$
of
$(\det (V^{[k]}),{\mathop{\textrm{tr}}\nolimits }(\theta ^{[k]}))$
compatible with
$\det (C^{[k]})$
. We obtain the decomposable filtered Higgs bundle
$(\mathcal{P}^{\star }_{\ast }(\mathcal{V}^C),\theta )$
determined by the tuple
$\mathcal{P}^C_{\ast }\det ((\mathcal{V}^C)^{[k]})$
as in Proposition 5.13.
Proposition 5.16. The following holds:
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)=\mathcal{P}^{\star }_{\ast }(\mathcal{V}^C)$
.
Proof.
The filtered Higgs bundle
$(\mathcal{P}^C_{\ast }(\mathcal{V}^C),\theta )$
is decomposable. We have
$\det (\mathcal{P}^C_{\ast }(\mathcal{V}^C)^{[k]}) =\mathcal{P}^C_{\ast }\det ((\mathcal{V}^C)^{[k]}) =\det \mathcal{P}^{\star }_{\ast }((\mathcal{V}^C)^{[k]})$
. Hence, we obtain
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)=\mathcal{P}^{\star }_{\ast }(\mathcal{V}^C)$
by the uniqueness.
Corollary 5.17.
Let
$\mathcal{P}_{\ast }(\mathcal{V}^C)$
be a filtered extension of
$(V,\theta )$
satisfying the following conditions:
-
–
$C$ is perfect with respect to
$\mathcal{P}_{\ast }(\mathcal{V}^C)$ ;
-
–
$\mathcal{P}_{\ast }\mathcal{V}^C=\bigoplus _{k\in S} \mathcal{P}_{\ast }((\mathcal{V}^C)^{[k]})$ .
Let
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
be the decomposable filtered extension of
$(V,\theta )$
determined by the filtered bundles
$\det \bigl (\mathcal{P}_{\ast }((\mathcal{V}^C)^{[k]})\bigr )$
$(k\in S)$
. Then,
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)=\mathcal{P}^{\star }_{\ast }(\mathcal{V}^C)$
.
Proof.
It follows from
$\det \bigl (\mathcal{P}_{\ast }((\mathcal{V}^C)^{[k]})\bigr ) =\mathcal{P}^C_{\ast }\det \bigl ((\mathcal{V}^C)^{[k]}\bigr )$
.
Let
$C$
and
$C'$
be non-degenerate symmetric pairings of
$(V,\theta )$
. Let
$C^{[k]}$
and
$C^{\prime [k]}$
$(k\in S)$
be the induced non-degenerate symmetric pairings of
$(V^{[k]},\theta ^{[k]})$
. We have the corresponding symmetric pairings
$C^{[k]}_1$
and
$C^{\prime [k]}_1$
of
$V^{[k]}_1$
.
Corollary 5.18.
Suppose that
$\det (C^{[k]})=\det (C^{\prime [k]})$
for any
$k\in S$
. Then,
$\mathcal{V}^{C}=\mathcal{V}^{C'}$
holds if and only if
$\mathcal{P}^C_{\ast }\mathcal{V}^C=\mathcal{P}^{C'}_{\ast }\mathcal{V}^{C'}$
holds. It is equivalent to the condition that there exist holomorphic functions
$\gamma _1^{[k]}$
$(k\in S)$
on
$U^{(r_k)}$
satisfying
$C^{\prime [k]}_1=\exp (\gamma _1^{[k]})C^{[k]}_1$
and
$\sum _{\sigma \in \mathop{\textrm{Gal}}\nolimits (r_k)}\sigma ^{\ast }\gamma ^{[k]}_1=0$
.
Proof. The ‘if’ part of the claim is clear. The “only if” part of the claim follows from Corollary 5.17.
5.4 Prolongation of decoupled harmonic bundles
Let
$(V,\theta )$
be a Higgs bundle on
$U^{\ast }$
, which is regular semisimple and wild. Let
$h$
be a decoupled harmonic metric of
$(V,\theta )$
. We obtain the good filtered Higgs bundle
$(\mathcal{P}^h_{\ast }V,\theta )$
on
$(U,0)$
.
Lemma 5.19. The filtered Higgs bundle
$(\mathcal{P}^h_{\ast }V,\theta )$
is decomposable.
Proof.
Because the decomposition (34) is orthogonal with respect to
$\varphi _{\ell }^{-1}(h)$
, the claim is clear.
Remark 5.20. If
$h$
is a decoupled harmonic metric of
$(V,\theta )$
, then we obtain that
$\mathcal{P}^h_{\ast }V$
is a filtered bundle without assuming
$\theta$
is wild.
We have the decomposition
$\mathcal{P}^h_{\ast }(V)=\bigoplus _{k\in S}\mathcal{P}^h_{\ast }(V^{[k]})$
. We obtain the filtered extensions
$\det (\mathcal{P}^h_{\ast }V^{[k]}) =\mathcal{P}^{\det (h)}_{\ast }\det (V^{[k]})$
of
$\det (V^{[k]})$
. We have the filtered bundle
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
over
$\mathcal{V}=\mathcal{P}^hV$
determined by
$\det (\mathcal{P}^h_{\ast }V^{[k]})$
as in Proposition 5.13.
Lemma 5.21.
We have
$\mathcal{P}^h_{\ast }(V) =\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
.
Proof.
This follows from the uniqueness of the decomposable filtered extension
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
of
$(V,\theta )$
satisfying the condition in Proposition 5.13.
The decomposition (36) is orthogonal with respect to
$h$
. Let
$h^{[k]}$
denote the induced decoupled harmonic metric of
$(V^{[k]},\theta ^{[k]})$
$(k\in S)$
. The decomposition (37) is orthogonal with respect to
$\varphi _{r_k}^{\ast }(h^{[k]})$
. Let
$h^{[k]}_1$
denote the induced flat metric of
$V^{[k]}_1$
.
Let
$h'$
be another decoupled harmonic metric of
$(V,\theta )$
. Similarly, we obtain the induced decomposable harmonic metric
$h^{\prime [k]}$
of
$(V^{[k]},\theta ^{[k]})$
and the induced flat metric
$h^{\prime [k]}_1$
of
$V^{[k]}_1$
.
Corollary 5.22.
Suppose that
$\det (h^{[k]})=\det (h^{\prime [k]})$
for any
$k\in S$
. Then,
$\mathcal{P}^hV=\mathcal{P}^{h'}V$
hold if and only if
$\mathcal{P}^{h}_{\ast }(V)=\mathcal{P}^{h'}_{\ast }(V)$
holds. This is equivalent to the condition that there uniquely exist holomorphic functions
$\gamma _1^{[k]}$
$(k\in S)$
on
$U^{(r_k)}$
such that (i)
$h^{\prime [k]}_{1}=\exp (2{\mathop{\textrm{Re}}\nolimits }(\gamma _1^{[k]}))h^{[k]}_1$
and (ii)
$\sum _{\sigma \in \mathop{\textrm{Gal}}\nolimits (r_k)} \sigma ^{\ast }\gamma _1^{[k]}=0$
.
Proof. The ‘if’ part of the claim is clear. The “only if” part of the claim follows from Lemma 5.21. The second claim is clear.
5.5 Decoupled harmonic metrics and symmetric products
5.5.1 Comparison of extensions
Let
$(V,\theta )$
be a Higgs bundle on
$U^{\ast }$
which is regular semisimple and wild. Let
$C$
be a non-degenerate symmetric pairing of
$(V,\theta )$
. There exists a unique decoupled harmonic metric
$h^C$
of
$(V,\theta )$
compatible with
$C$
.
Lemma 5.23.
We have
$\mathcal{P}^{h^C}_{\ast }(V)=\mathcal{P}^C_{\ast }(\mathcal{V}^C)$
.
Proof.
By the pull back via
$\varphi _{\ell }$
, it is enough to consider the case
$\mathop{\textrm{rank}}\nolimits V=1$
, which is easy to check.
5.5.2 Symmetric products compatible with a decoupled harmonic metric
The following lemma is a special case of Lemma 2.7.
Lemma 5.24.
Suppose
$\mathop{\textrm{rank}}\nolimits V=1$
. Let
$h$
be a flat metric of
$V$
. There exists a holomorphic non-degenerate symmetric product
$C$
of
$V$
which is compatible with
$h$
if and only if the monodromy of the Chern connection of
$h$
is
$1$
or
$-1$
. It is equivalent to the condition

If
$C'$
is another non-degenerate symmetric pairing of
$V$
which is compatible with
$h$
, there exists a non-zero constant
$\alpha$
such that (i)
$C'=\alpha C$
and (ii)
$|\alpha |=1$
.
Proposition 5.25.
Let
$h$
be a decoupled harmonic metric of
$(V,\theta )$
. Suppose that there exist non-degenerate symmetric products
$C_{\det (V^{[k]})}$
$(k\in S)$
of
$\det (V^{[k]})$
which are compatible with
$\det (h^{[k]})$
.
-
– There exists a non-degenerate symmetric pairing
$C$ of
$(V,\theta )$ such that (i)
$C$ is compatible with
$h$ and (ii)
$\det (C^{[k]})=C_{\det (V^{[k]})}$ .
-
– If
$C'$ is another non-degenerate symmetric pairing of
$(V,\theta )$ satisfying the above conditions (i) and (ii), then there exist
$r_k$ -roots
$\mu _k$ of
$1$ such that
$C^{\prime [k]}=\mu _k C^{[k]}$ .
Proof.
Let
$h^{[k]}_1$
$(k\in S)$
be the induced flat metrics of
$V^{[k]}_1$
. By Lemma 2.7, Proposition 5.13 and Lemma 5.24, there exist non-degenerate symmetric products
$C^{[k]}_1$
of
$V^{[k]}_1$
compatible with
$h^{[k]}_1$
for any
$k\in S$
. They induce non-degenerate symmetric products
$C^{[k]}$
of
$(V^{[k]},\theta ^{[k]})$
. Because
$\det (C^{[k]})$
is compatible with
$\det h^{[k]}$
, there exist constants
$\alpha _k$
such that
$\det (C^{[k]})=\alpha _k\cdot C_{\det (V^{[k]})}$
and
$|\alpha _k|=1$
. By replacing
$C^{[k]}$
with
$\alpha _k^{1/r_k}C^{[k]}$
, we obtain the first claim. The second claim is also clear.
5.5.3 Existence
Let
$\mathcal{V}$
be a meromorphic extension of
$(V,\theta )$
.
Lemma 5.26.
Let
$C_{\det (V^{[k]})}$
be non-degenerate symmetric pairings of
$\det (V^{[k]})$
such that
$\det (\mathcal{V}^{[k]})$
is compatible with
$C_{\det (V^{[k]})}$
. Then, there exists a non-degenerate symmetric pairing
$C$
of
$(V,\theta )$
such that (i)
$\det (C^{[k]})=C_{\det (\mathcal{V}^{[k]})}$
and (ii)
$\mathcal{V}^C=\mathcal{V}$
.
Proof.
It is enough to consider the case
$|S|=1$
. We omit the superscript
$[k]$
and the subscript
$k$
. We use the notation in the proof of Proposition 5.13. Let
$C'_{1,\beta (1)}$
be a non-degenerate symmetric pairing of
$\mathcal{V}_{\beta (1)}$
. We obtain a
$\mathop{\textrm{Gal}}\nolimits (r)$
-invariant non-degenerate symmetric pairing
$\bigoplus _{\sigma \in \mathop{\textrm{Gal}}\nolimits (r)}\sigma ^{\ast }C'_{1,\beta (1)}$
of
$\mathcal{V}^{(r)}$
. It induces a non-degenerate symmetric pairing
$C'$
of
$\mathcal{V}$
. From
$C''_{1,\beta (1)}=\zeta C'_{1,\beta (1)}$
, we obtain another non-degenerate symmetric pairing
$C''$
, for which we have
$\det (C'')=z\det (C')$
.
Let
$\alpha$
be the holomorphic function on
$U^{\ast }$
determined by
$\det (C')=\alpha \cdot C_{\det (V)}$
. By the above consideration, we may assume that
$\alpha$
induces a nowhere vanishing holomorphic function on
$U$
. By choosing an
$r$
th root
$\alpha ^{1/r}$
of
$\alpha$
, and by setting
$C=\alpha ^{-1/r}C'$
, we obtain a desired non-degenerate pairing
$C$
.
We can prove the following lemma similarly.
Lemma 5.27.
Let
$h_{\det (V^{[k]})}$
be flat metrics of
$\det (V^{[k]})$
such that
$\det (\mathcal{V}^{[k]})=\mathcal{P}^{h_{\det (V^{[k]})}}(\det (V^{[k]}))$
. There exists a decoupled harmonic metric
$h$
of
$(V,\theta )$
such that (i)
$\det (h^{[k]})=h_{\det (V^{[k]})}$
and (ii)
$\mathcal{P}^h(V)=\mathcal{V}$
.
5.6 Global case
5.6.1 Meromorphic extensions and filtered extensions
Let
$Y$
be a Riemann surface with a discrete subset
$D$
. Let
$\iota _{Y\setminus D}\colon Y\setminus D\to Y$
denote the inclusion. For a holomorphic vector bundle
$V$
on
$Y\setminus D$
, a meromorphic extension of
$V$
to
$(Y,D)$
is defined to be a locally free
$\mathcal{O}_Y(\ast D)$
-submodule
$\mathcal{V}$
of
$(\iota _{Y\setminus D})_{\ast }V$
such that
$\mathcal{V}_{|Y\setminus D}=V$
. A filtered extension of
$V$
to
$(Y,D)$
is a filtered bundle
$\mathcal{P}_{\ast }\mathcal{V}$
over a meromorphic extension
$\mathcal{V}$
of
$V$
. We use similar terminology for non-degenerate symmetric parings and Higgs bundles in this situation.
5.6.2 Decomposable filtered extensions
Let
$(V,\theta )$
be a regular semisimple Higgs bundle on
$Y\setminus D$
which is wild along
$D$
. Let
$\mathcal{P}_{\ast }\mathcal{V}$
be a filtered extension of
$(V,\theta )$
to
$(Y,D)$
.
Definition 5.28.
$\mathcal{P}_{\ast }\mathcal{V}$
is called a decomposable filtered extension of
$(V,\theta )$
if the restriction to a neighbourhood of any
$P\in D$
is decomposable.
The following lemma is clear.
Lemma 5.29.
A decomposable filtered Higgs bundle
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is a good filtered Higgs bundle. Any decomposition
$(\mathcal{V},\theta )_{|Y\setminus D}= (V_1,\theta _1)\oplus (V_2,\theta _2)$
extends to a decomposition
$(\mathcal{P}_{\ast}\mathcal{V},\theta )= (\mathcal{P}_{\ast }\mathcal{V}_1,\theta _1) \oplus (\mathcal{P}_{\ast }\mathcal{V}_2,\theta _2)$
.
We have the line bundle
$L_V$
on
$\Sigma _{V,\theta }$
corresponding to
$(V,\theta )$
. Let
$\mathbb{P}(T^{\ast }Y)$
be the projective completion of
$T^{\ast }Y$
. Let
$Z$
be the closure of
$\Sigma _{V,\theta }\subset T^{\ast }(Y\setminus D)$
in
$\mathbb{P}(T^{\ast }Y)$
. Let
$\widetilde{\Sigma }_{V,\theta }\to Z$
denote the normalization. We may naturally regard
$\widetilde{\Sigma }_{V,\theta }$
as a partial compactification of
$\Sigma _{V,\theta }$
. We set
$\widetilde{D}=\widetilde{\Sigma }_{V,\theta }\setminus \Sigma _{V,\theta }$
. The morphism
$\pi :\Sigma _{V,\theta }\to Y\setminus D$
uniquely extends to a morphism
$\widetilde{\pi }:(\widetilde{\Sigma }_{V,\theta },\widetilde{D})\to (Y,D)$
. From a meromorphic extension
$\mathcal{L}_V$
of
$L_V$
to
$(\widetilde{\Sigma }_{V,\theta },\widetilde{D})$
, we obtain a meromorphic extension
$\widetilde{\pi }_{\ast }(\mathcal{L}_V)$
of
$(V,\theta )$
to
$(Y,D)$
. From a filtered extension
$\mathcal{P}_{\ast }\mathcal{L}_V$
of
$L_V$
to
$(\widetilde{\Sigma }_{V,\theta },\widetilde{D})$
, we obtain a decomposable filtered extension
$\widetilde{\pi }_{\ast }(\mathcal{P}_{\ast }\mathcal{L}_V)$
of
$(V,\theta )$
to
$(Y,D)$
. The following proposition is a reformulation of Proposition 5.12.
Proposition 5.30.
The above procedure induces an equivalence between filtered extensions (respectively meromorphic extensions) of
$L_V$
to
$(\widetilde{\Sigma }_{V,\theta },\widetilde{D})$
and decomposable filtered extensions (respectively meromorphic extensions) of
$(V,\theta )$
to
$(Y,D)$
.
5.6.3 Symmetric products
Let
$C$
be a non-degenerate symmetric pairing of
$(V,\theta )$
. We restate Proposition 5.15 in the global setting.
Proposition 5.31.
For a non-degenerate symmetric pairing
$C$
of
$(V,\theta )$
, there uniquely exists a meromorphic extension
$\mathcal{V}^C$
of
$(V,\theta )$
to
$(Y,D)$
compatible with
$C$
. Moreover, there uniquely exists a filtered bundle
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$
over
$\mathcal{V}^C$
satisfying the following conditions;
-
–
$C$ is perfect with respect to
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$ ;
-
–
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$ is a decomposable filtered extension of
$(V,\theta )$ .
The decomposable filtered extension
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)$
is described as follows. Let
$C_0$
be the non-degenerate symmetric pairing of
$L_V$
corresponding to
$C$
. There exists the unique filtered extension
$\mathcal{P}^{C_0}_{\ast }(\mathcal{L}^{C_0}_V)$
of
$L_V$
to
$(\widetilde{\Sigma }_{V,\theta },\widetilde{D})$
. Then,
$\mathcal{P}^C_{\ast }(\mathcal{V}^C)= \widetilde{\pi }_{\ast }(\mathcal{P}^{C_0}_{\ast }(\mathcal{L}^{C_0}_V))$
.
5.6.4 Decoupled harmonic bundles
Let
$h$
be a decoupled harmonic metric of
$(V,\theta )$
. We obtain the good filtered Higgs bundle
$(\mathcal{P}^h_{\ast }V,\theta )$
on
$(Y,D)$
. We obtain the following lemma from Lemma 5.19.
Lemma 5.32. The filtered Higgs bundle
$(\mathcal{P}^h_{\ast }V,\theta )$
is decomposable.
We obtain the following lemma from Lemma 5.23.
Lemma 5.33.
For a non-degenerate symmetric pairing
$C$
of
$(V,\theta )$
, we have
$\mathcal{P}^{h^C}_{\ast }(V)=\mathcal{P}^C_{\ast }(\mathcal{V}^C)$
.
5.7 Kobayashi–Hitchin correspondence for decoupled harmonic bundles
Let
$X$
be a compact Riemann surface. Let
$D\subset X$
be a finite subset. Let
$(V,\theta )$
be a regular semisimple Higgs bundle on
$X\setminus D$
, which is wild along
$D$
. For any decoupled harmonic metric
$h$
of
$(V,\theta )$
we obtain a good filtered Higgs bundle
$(\mathcal{P}^h_{\ast }\mathcal{V},\theta )$
on
$(X,D)$
which is polystable of degree
$0$
. According to Lemma 5.32, it is decomposable.
Conversely, let
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
be a polystable decomposable filtered Higgs bundle of degree
$0$
on
$(X,D)$
such that
$(V,\theta )=(\mathcal{V},\theta )_{|X\setminus D}$
is regular semisimple. There exists a harmonic metric
$h$
of
$(V,\theta )$
adapted to
$\mathcal{P}_{\ast }\mathcal{V}$
by [Reference Biquard and BoalchBB04, Reference MochizukiMoc21, Reference SimpsonSim90].
Proposition 5.34. The harmonic metric
$h$
is a decoupled harmonic metric.
Proof.
It is enough to consider the case where
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is stable. By Lemma 5.29,
$\Sigma _{V,\theta }$
is connected. Let
$\mathbb{P}(T^{\ast }X)$
denote the projective completion of
$T^{\ast }X$
. Let
$Z$
denote the closure of
$\Sigma _{V,\theta }$
in
$\mathbb{P}(T^{\ast }X)$
. Let
$\widetilde{\Sigma }_{V,\theta }\to Z$
denote the normalization. Let
$\rho :\widetilde{\Sigma }_{V,\theta }\to X$
denote the induced morphism. We set
$\widetilde{D}=\rho ^{-1}(D)$
. Let
$L_V$
be the line bundle on
$\Sigma _{V,\theta }$
corresponding to
$(V,\theta )$
. Because
$\mathcal{P}_{\ast }\mathcal{V}$
is a decomposable filtered extension of
$(V,\theta )$
, there exists the corresponding filtered extension
$\mathcal{P}_{\ast }\mathcal{L}_V$
of
$L_V$
on
$(\widetilde{\Sigma }_{V,\theta },\widetilde{D})$
. We have
$\rho _{\ast }(\mathcal{P}_{\ast }\mathcal{L})=\mathcal{P}_{\ast }\mathcal{V}$
. By Proposition 5.35 below, we have
$\deg (\mathcal{P}_{\ast }\mathcal{L}_V) =\deg (\mathcal{P}_{\ast }\mathcal{V})=0$
. There exists a flat metric
$h_{L_V}$
of
$L_V$
adapted to
$\mathcal{P}_{\ast }\mathcal{L}_V$
. We obtain a decoupled harmonic metric
$h_1$
of
$(V,\theta )$
corresponding to
$h_{L_V}$
, which is adapted to
$\mathcal{P}_{\ast }\mathcal{V}$
. By the stability, there exists a positive constant
$h=ah_1$
, and hence
$h$
is also a decoupled harmonic metric.
5.7.1 Degree
Let
$\rho :X_1\to X_2$
be a non-constant morphism of compact Riemann surfaces. Let
$D_2\subset X_2$
be a finite subset. We set
$D_1=\rho ^{-1}(D_2)$
. Let
$\mathcal{P}_{\ast }\mathcal{V}$
be a filtered bundle on
$(X_1,D_1)$
. We obtain a filtered bundle
$\rho _{\ast }(\mathcal{P}_{\ast }\mathcal{V})$
on
$(X_2,D_2)$
. Let
$m(P)$
denote the ramification index of
$\rho$
at
$P\in X_1$
.
Proposition 5.35. The following holds:

Proof.
We have
$\mathcal{P}_0(\rho _{\ast }\mathcal{V})=\rho _{\ast }(\mathcal{P}_0\mathcal{V})$
. By the Grothendieck–Riemann–Roch theorem and the Riemann–Hurwitz formula, we have

By the construction of
$\rho _{\ast }(\mathcal{P}_{\ast }\mathcal{V})$
, we obtain

Thus, we are done.
Remark 5.36. If there is no ramification point in
$X_1\setminus D_1$
, we have
$\deg (\mathcal{P}_{\ast }\mathcal{V})=\deg (\rho _{\ast }\mathcal{P}_{\ast }\mathcal{V})$
. We can also prove it as follows. Let
$h_0$
be a Hermitian metric of
$\mathcal{V}_{|X_1\setminus D_1}$
such that (i)
$h_0$
is flat around any point of
$D_1$
and (ii)
$h_0$
is adapted to
$\mathcal{P}_{\ast }\mathcal{V}$
. Let
$R(h_0)$
be the curvature of the Chern connection of
$h$
. Then, we have

We have the induced metric
$\rho _{\ast }(h_0)$
of
$\rho _{\ast }(\mathcal{V})_{|X_2\setminus D_2}$
. It is flat around any point of
$D_2$
, and it is adapted to
$\rho _{\ast }(\mathcal{P}_{\ast }\mathcal{V})$
. Hence, we have

Then, we obtain
$\deg (\mathcal{P}_{\ast }\mathcal{V})=\deg (\rho _{\ast }\mathcal{P}_{\ast }\mathcal{V})$
.
5.8 Dirichlet problem for wild decoupled harmonic bundles
Let
$Y$
,
$X$
,
$D$
and
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
be as in §2.3.
Proposition 5.37.
Assume that
$(V,\theta )$
is regular semisimple and that
$\mathcal{P}_{\ast }(\mathcal{V})$
is a decomposable filtered extension. Then, the harmonic metric
$h$
in Theorem
2.8
is decoupled.
Proof.
It is enough to consider the case where
$\Sigma _{V,\theta }$
is connected. Let
$\widetilde{\Sigma }_{V,\theta }$
be the partial compactification of
$\Sigma _{V,\theta }$
as in §5.6.2. Let
$\widetilde{X}$
and
$\widetilde{D}$
denote the inverse images of
$X$
and
$D$
, respectively, by the natural morphism
$\widetilde{\Sigma }_{V,\theta }\to Y$
. There exists a line bundle
$L_V$
on
$\Sigma _{V,\theta }$
corresponding to
$(V,\theta )$
. Let
$\mathcal{P}_{\ast }\mathcal{L}_V$
be the filtered line bundle on
$(\widetilde{\Sigma }_{V,\theta },\widetilde{D})$
corresponding to
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
. There exists a Hermitian metric
$h_0$
of
$L_{V}$
such that (i)
$h_0$
is flat around any point of
$\widetilde{D}$
, (ii)
$h_0$
is adapted to
$\mathcal{P}_{\ast }\mathcal{L}_V$
and (iii)
$h_{0|{\partial } \widetilde{X}}$
induces
$h_{{\partial } X}$
. Let
$R(h_0)$
denote the curvature of the Chern connection of
$(L_V,h_0)$
. It vanishes around
$\widetilde{D}$
. There exists an
$\mathbb{R}$
-valued
$C^{\infty }$
-function
$\alpha$
on
$\widetilde{X}$
such that (i)
$\overline{\partial }{\partial }\alpha =R(h_0)_{|\widetilde{X}}$
and (ii)
$\alpha _{|{\partial } \widetilde{X}}=0$
. Then,
$h_1=e^{-\alpha }h_0$
is a flat metric of
$L_{V|\widetilde{X}}$
adapted to
$\mathcal{P}_{\ast }\mathcal{L}_V$
such that
$h_{1|{\partial } \widetilde{X}}=h_{0|{\partial } \widetilde{X}}$
. Let
$h_2$
be the decoupled harmonic metric of
$(V,\theta )_{|X\setminus D}$
corresponding to
$h_1$
. It is adapted to
$\mathcal{P}_{\ast }\mathcal{V}$
and it satisfies
$h_{2|{\partial } X}=h_{{\partial } X}$
. By the uniqueness in Theorem2.8, we have
$h=h_2$
.
6. Large-scale solutions with prescribed boundary value
6.1 Harmonic metrics of regular semisimple Higgs bundles on a punctured disc
6.1.1 General case
Let
$U$
be a neighbourhood of
$0$
in
$\mathbb{C}$
. Let
$U_0$
be a relatively compact open neighbourhood of
$0$
in
$U$
with smooth boundary
${\partial } U_0$
. We set
$U^{\ast }=U\setminus \{0\}$
and
$U_0^{\ast }=U_0\setminus \{0\}$
.
Let
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
be a good filtered Higgs bundle of rank
$r$
on
$(U,0)$
such that
$(V,\theta ):=(\mathcal{V},\theta )_{|U^{\ast }}$
is regular semisimple. Let
$h_{{\partial } U_0}$
be a Hermitian metric of
$V_{|{\partial } U_0}$
. According to Theorem2.8, for any
$t\gt 0$
, there exists a unique harmonic metric
$h_t$
of
$(V,t\theta )_{|U_0^{\ast }}$
such that
$h_{t|{\partial } U_0}=h_{{\partial } U_0}$
and that
$\mathcal{P}^{h_t}_{\ast }(V)=\mathcal{P}_{\ast }\mathcal{V}$
. Note that
$\det (h_t)=\det (h_1)$
for any
$t\gt 0$
.
Proposition 6.1.
Let
$t(i)$
be any sequence of positive numbers such that
$t(i)\to \infty$
. Then, there exists a subsequence
$t'(j)$
such that the following hold:
-
–
$t'(j)\to \infty$ ;
-
– the sequence
$h_{t'(j)}$ is convergent to a harmonic metric on any relatively compact open subset of
$U_0^{\ast }$ in the
$C^{\infty }$ -sense.
The limit
$h_{\infty }$
is a decoupled harmonic metric of
$(V,\theta )$
such that
$\mathcal{P}^{h_{\infty }}(V)=\mathcal{V}$
and that
$\det (h_{\infty })=\det (h_1)$
.
Proof.
By taking the pull back via a ramified covering map
$\varphi _{\ell }$
as in §5.1.1, it is enough to consider the case where there exist meromorphic functions
$\gamma (1),\ldots, \gamma (r)$
on
$(U,0)$
and a decomposition

Let
$v_i$
be a frame of
$\mathcal{V}_i$
on
$U$
such that
$v_i$
is a section of
$\mathcal{P}_{\lt 0}\mathcal{V}$
.
Lemma 6.2.
There exists a constant
$C\gt 0$
such that
$h_{t}(v_i,v_i)\leqslant C$
for any
$t\gt 0$
.
Proof.
It is enough to consider the case where
$\gamma (i)=0$
. We have
$\theta (v_i)=0$
. Then, we have
$-{\partial }_z{\partial }_{{\overline{z}}}|v_i|_{h_t}^2\leqslant 0$
on
$U_0^{\ast }$
(see a preliminary Weitzenböck formula in [Reference SimpsonSim90, Proof of Lemma 4.1]). Because
$v_i$
is a section of
$\mathcal{P}_{\lt 0}\mathcal{V}$
,
$|v_i|_{h_t}^2$
is bounded for each
$t$
. Hence,
$|v_i|_{h_t}^2$
is subharmonic on
$U_0$
. By the maximum principle, we obtain
$|v_i|^2_{h_t} \leqslant \max _{{\partial } U_0}|v_i|_{h_t}^2 =\max _{{\partial } U_0}|v_i|_{h_1}^2$
.
Let
$\mathcal{V}^{\lor }={\mathcal Hom}_{\mathcal{O}_U}(\mathcal{V},\mathcal{O}_U(\ast 0))$
denote the dual of
$\mathcal{V}$
. We have the induced filtered bundle
$\mathcal{P}_{\ast }(\mathcal{V}^{\lor })$
on
$\mathcal{V}^{\lor }$
. We set
$(V^{\lor },\theta ^{\lor }) =(\mathcal{V}^{\lor },\theta ^{\lor })_{|U^{\ast }}$
. The induced harmonic metric
$h_t^{\lor }$
of
$(V^{\lor },t\theta ^{\lor })$
is adapted to
$\mathcal{P}_{\ast }(\mathcal{V}^{\lor })$
.
There exists the induced decomposition
$\mathcal{V}^{\lor } =\bigoplus _{i=1}^r\mathcal{V}_i^{\lor }$
. Let
$v_i^{\lor }$
denote the section of
$\mathcal{V}^{\lor }_i$
such that
$v_i^{\lor }(v_i)=1$
. There exists
$m(i)\in \mathbb{Z}_{\gt 0}$
such that
$z^{m(i)}v_i^{\lor }$
is a section of
$\mathcal{P}_{\lt 0}(\mathcal{V}^{\lor })$
. By Lemma 6.2, we obtain the following lemma.
Lemma 6.3.
There exists
$C\gt 0$
such that
$|z|^{2m(i)}h_t^{\lor }(v_i^{\lor },v_i^{\lor })\leqslant C$
for any
$t\gt 0$
.
Let
$s_t$
be the automorphism of
$V_{|U_0^{\ast }}$
determined by
$h_t=h_1\cdot s_t$
. Let
$K$
be any relatively compact open subset of
$U_0^{\ast }$
. By Lemmas 6.2 and 6.3, there exist
$C_{K,1}\gt 0$
such that the following holds for any
$t\gt 0$
:

By a variant of Simpson’s main estimate (see [Reference MochizukiMoc16, Proposition 2.3]), there exist
$t_{K,1},C_{K,2},C_{K,3}\gt 0$
such that the following holds for any
$t\gt t_{K,1}$
and for any local sections
$u_{\beta (i)}$
and
$u_{\beta (j)}$
of
$V_{\beta (i)}$
and
$V_{\beta (j)}$
on
$K$
$(i\neq j)$
:

There also exist
$t_{K,2},C_{K,4},C_{K,5}\gt 0$
such that the following holds on
$K$
for any
$t\gt t_{K,2}$
(see [Reference MochizukiMoc16, Theorem 2.9]):

By (43) and (45), it is standard to obtain the existence of a convergent subsequence
$h_{t'(j)}$
. By (44) and (45), the limit is a decoupled harmonic metric. By Lemma 6.2, we obtain that
$h_{\infty }(v_i,v_i)\leqslant C$
. Hence,
$v_i$
are sections of
$\mathcal{P}^{h_{\infty }}(V)$
. This implies that
$\mathcal{V}\subset \mathcal{P}^{h_{\infty }}(V)$
. Because both
$\mathcal{V}$
and
$\mathcal{P}^{h_{\infty }}(V)$
are locally free
$\mathcal{O}_{U}(\ast 0)$
-modules, we obtain that
$\mathcal{V}=\mathcal{P}^{h_{\infty }}(V)$
.
Proposition 6.4.
Let
$h_{\infty }$
denote the limit of a convergent subsequence in Proposition 6.1
. Suppose the following condition holds.
-
– For every
$z_0\in{\partial } U_0$ , the eigen decomposition of
$\theta$ at
$z_0$ is orthogonal with respect to
$h_{{\partial } U_0}$ .
Then,
$h_{\infty |{\partial } U_0}=h_{{\partial } U_0}$
.
Proof.
Let
$U_1$
be a relatively compact open neighbourhood of
$0$
in
$U_0$
with smooth boundary
${\partial } U_1$
. Because
$h_{\infty }$
is a decoupled harmonic metric, the following condition is satisfied.
-
– For every
$z_1\in{\partial } U_1$ , the eigen decomposition of
$\theta$ at
$z_1$ is orthogonal with respect to
$h_{\infty }$ .
We set
$A=U_0\setminus \overline{U_1}$
. By Proposition 5.37, there exists a decoupled harmonic metric
$h^{(1)}$
of
$(V,\overline{\partial }_V,\theta )_{|A}$
such that
$h^{(1)}_{|{\partial } U_0}=h_{{\partial } U_0}$
and
$h^{(1)}_{|{\partial } U_1}=h_{\infty |{\partial } U_1}$
. We note that
$h^{(1)}$
is a harmonic metric of
$(V,\overline{\partial }_V,t\theta )_{|A}$
for any
$t\gt 0$
. We also note that
$\det (h^{(1)})=\det (h_1)_{|A}$
because
$\det (h^{(1)})_{|{\partial } A}=\det (h_1)_{|{\partial } A}$
.
Let
$s_t$
be determined by
$h_t=h^{(1)}s_t$
on
$A$
. We have
$-{\partial }_z{\partial }_{{\overline{z}}}{\mathop{\textrm{Tr}}\nolimits }(s_t)\leqslant 0$
. We have
$s_{t'(j)}\to{\mathop{\textrm{id}}\nolimits }$
on
${\partial } U_1$
and
$s_{t'(j)}={\mathop{\textrm{id}}\nolimits }$
on
${\partial } U_0$
. Hence, we obtain
$\bigl |{\mathop{\textrm{Tr}}\nolimits }(s_{t'(j)}-{\mathop{\textrm{id}}\nolimits }) \bigr |\to 0$
as
$t'(j)\to \infty$
. This implies the claim of the proposition.
6.1.2 The irreducible case
Suppose that the spectral curve is irreducible, i.e.
$\Sigma _{V,\theta }$
is connected. We obtain the decomposable filtered bundle
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
determined by
$\det (\mathcal{P}_{\ast }\mathcal{V})$
as in Proposition 5.13, which is not necessarily equal to
$\mathcal{P}_{\ast }(\mathcal{V})$
.
Lemma 6.5.
Let
$h_{\infty }$
denote the limit of a convergent subsequence in Proposition 6.1
. Then, we have
$\mathcal{P}^{h_{\infty }}_{\ast }(V) =\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
.
Proof.
We have
$\mathcal{P}^{h_{\infty }}V=\mathcal{V}$
. Because
$h_{\infty }$
is a decoupled harmonic metric,
$\mathcal{P}^{h_{\infty }}_{\ast }(\mathcal{V})$
is decomposable. Because
$\det (h_{\infty })=\det (h_1)$
, we obtain
$\det (\mathcal{P}^{h_{\infty }}_{\ast }V)=\det (\mathcal{P}_{\ast }\mathcal{V})$
. Then, the claim follows from the uniqueness of
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
.
Let
$h_0$
be any decoupled harmonic metric of
$(V,\overline{\partial }_V,\theta )$
such that
$\mathcal{P}^{h_0}(V)=\mathcal{V}$
and that
$\det (h_0)$
is adapted to
$\det (\mathcal{P}_{\ast }\mathcal{V})$
. By the argument in the proof of Lemma 6.5, we can prove
$\mathcal{P}^{h_0}_{\ast }(V)=\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
. Let
$h_t$
$(t\gt 0)$
be the harmonic metrics of
$(V,\overline{\partial }_V,t\theta )$
adapted to
$\mathcal{P}_{\ast }\mathcal{V}$
such that
$h_{t|{\partial } U_0}=h_{0|{\partial } U_0}$
.
Proposition 6.6.
The sequence
$h_t$
is convergent to
$h_0$
as
$t\to \infty$
in the
$C^{\infty }$
-sense on any relatively compact open subset of
$U_0^{\ast }$
.
Proof.
Let
$t_i$
be any subsequence such that
$t_i\to \infty$
and that
$h_{t_i}$
is convergent. Let
$h_{\infty }$
denote the limit. By Proposition 6.4, we have
$h_{\infty |{\partial } U_0}=h_{0|{\partial } U_0}$
. We also have
$\mathcal{P}_{\ast }^{h_{\infty }}(V) =\mathcal{P}^{\star }_{\ast }(\mathcal{V}) =\mathcal{P}_{\ast }^{h_0}(V)$
. Hence, we obtain
$h_{\infty }=h_0$
. This implies that
$h_t$
is convergent to
$h_0$
as
$t\to \infty$
.
6.1.3 Symmetric case
We do not assume that the spectral curve is irreducible. Instead, suppose that there exists a perfect pairing
$C$
of
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
. There uniquely exists a decoupled harmonic metric
$h^C$
of
$(V,\theta )$
which is compatible with
$C$
. As in Lemma 5.23, we have
$\mathcal{P}^{h^C}_{\ast }(V)= \mathcal{P}^C_{\ast }\mathcal{V}$
.
Suppose that
$h_{{\partial } U_0}$
is compatible with
$C_{|{\partial } U_0}$
. Then,
$h_t$
$(t\gt 0)$
are compatible with
$C$
by Corollary 2.9. Let
$s_t$
be determined by
$h_t=h^Cs_t$
. We note that
$\det (h_t)=\det (h_1)=\det (h^C)$
by the compatibility with
$C$
. The following proposition is a special case of Corollary 3.5.
Proposition 6.7.
If
$h_{{\partial } U_0}$
is compatible with
$C_{|{\partial } U_0}$
, the sequence
$h_t$
is convergent to
$h^C$
in the
$C^{\infty }$
-sense on any relatively compact subset
$K$
of
$U_0^{\ast }$
. Moreover, there exists
$t(K)\gt 0$
such that the following holds for any
$\ell \geqslant 0$
.
-
– There exists
$C(K,\ell )$ and
$\epsilon (K,\ell )$ such that the norms of
$s_t-{\mathop{\textrm{id}}\nolimits }$
$(t\geqslant t(K))$ and their derivatives up to order
$\ell$ are dominated by
$C(K,\ell )\exp (-\epsilon (K,\ell )t)$ .
Let us also consider the case where
$h_{{\partial } U_0}$
is not necessarily compatible with
$C_{|{\partial } U_0}$
, but
$\det (h_{{\partial } U_0})$
is compatible with
$\det (C)_{|{\partial } U_0}$
. Because
$\det (h_t)$
are compatible with
$\det (C)$
on
$U_0$
, we obtain
$\det (h_t)=\det (h_1)=\det (h^C)$
.
Proposition 6.8.
Let
$h_{t(i)}$
be a convergent subsequence, and let
$h_{\infty }$
denote the limit as in Proposition 6.1
. Then,
$\mathcal{P}^{h_{\infty }}_{\ast }(V)=\mathcal{P}^C_{\ast }(\mathcal{V})$
.
Proof.
Let
$h'_t$
$(t\gt 0)$
be harmonic metrics of
$(V,t\theta )$
which are compatible with
$C$
, such that
$\det (h'_t)=\det (h_1)$
. We have already proved that the sequence
$h'_t$
is convergent to
$h^C$
. We have
$\det (h'_t)=\det (h_t)$
. Let
$s_t$
be the automorphism determined by
$h_t=h_t's_t$
. Let
$s_{\infty }$
be determined by
$h_{\infty }=h^Cs_{\infty }$
. The sequence
$s_t$
is convergent to
$s_{\infty }$
. Because
$\det (s_t)=1$
, we have
$\det (s_{\infty })=1$
. Because
${\mathop{\textrm{Tr}}\nolimits }(s_t)$
is subharmonic on
$U_0$
, we obtain that
$\max _{U_0}{\mathop{\textrm{Tr}}\nolimits }(s_t)= \max _{{\partial } U_0}{\mathop{\textrm{Tr}}\nolimits }(s_t) =\max _{{\partial } U_0}{\mathop{\textrm{Tr}}\nolimits }(s_1)$
. We obtain that
${\mathop{\textrm{Tr}}\nolimits }(s_{\infty })$
is bounded. Then,
$s_{\infty }$
and
$s_{\infty }^{-1}$
are bounded, and we obtain
$\mathcal{P}^{h_{\infty }}(V)=\mathcal{P}^{C}_{\ast }(\mathcal{V})$
.
Suppose that for every
$z_0\in{\partial } U_0$
the eigen decomposition of
$\theta$
is orthogonal with respect to
$h_{{\partial } U_0}$
. There exists a decoupled harmonic metric
$\widetilde{h}$
of
$(V,\theta )$
such that
$\widetilde{h}_{|{\partial } U_0}=h_{{\partial } U_0}$
and
$\mathcal{P}^{\widetilde{h}}_{\ast }(V)=\mathcal{P}^C_{\ast }(\mathcal{V})$
.
Corollary 6.9.
The sequence
$h_{t}$
is convergent to
$\widetilde{h}$
.
6.2 Local symmetrizability of Higgs bundles
Let
$U$
be a simply connected open subset in
$\mathbb{C}$
. Let
$D$
be a finite subset of
$U$
. Let
$(E,\overline{\partial }_E,\theta )$
be a Higgs bundle on
$U$
such that
$(V,\theta )=(E,\theta )_{|U\setminus D}$
is regular semisimple. Let
$\pi :\Sigma _{E,\theta }\to U$
denote the projection. Let
$\rho :\widetilde{\Sigma }_{E,\theta }\to \Sigma _{E,\theta }$
denote the normalization of
$\Sigma _{E,\theta }$
. We set
$\widetilde{D}=(\pi \circ \rho )^{-1}(D)$
. We assume the following condition.
-
– There exists a line bundle
$L$ on
$\widetilde{\Sigma }_{E,\theta }$ with an isomorphism
$(\pi \circ \rho )_{\ast }L\simeq E$ . Moreover, the Higgs field
$\theta$ of
$E$ is induced by the
$\mathcal{O}_{T^{\ast }U}$ -action on
$\rho _{\ast }L$ .
For any
$P\in D$
, let
$U_P$
be a simply connected neighbourhood of
$P$
in
$U$
such that
$U_P\cap D=\{P\}$
. We set
$U_P^{\ast }=U_P\setminus \{P\}$
. There exists the decomposition

such that the spectral curves of
$(V_P^{[k]},\theta _P^{[k]})$
are connected. Because
$E\simeq (\pi \circ \rho )_{\ast }L$
, (46) extends to the decomposition

Let
$h$
be a decoupled harmonic metric of
$(V,\theta )$
. The decomposition (46) is orthogonal with respect to
$h$
. Let
$h_P^{[k]}$
denote the restriction of
$h$
to
$V^{[k]}_P$
. We consider the following condition.
Condition 6.10.
$\det (h^{[k]}_P)$
induces a flat metric of
$\det (E^{[k]}_P)$
, and
$\mathcal{P}^hV=E(\ast D)$
holds.
We shall prove the following proposition in §6.2.2 after the preliminary in §6.2.1.
Proposition 6.11.
Suppose that Condition 6.10 is satisfied at each
$P\in D$
. Moreover, we assume that each connected component of
$\widetilde{\Sigma }_{E,\theta }$
is simply connected. Then, the following claims hold.
-
– There exists a non-degenerate symmetric pairing
$C$ of
$(E,\theta )$ such that
$C_{|U\setminus D}$ is compatible with
$h$ .
-
– Let
$C'$ be a non-degenerate symmetric pairing of
$(V,\theta )$ which is compatible with
$h$ . Then,
$C'$ induces a non-degenerate symmetric pairing of
$E$ .
Remark 6.12. If
$\Sigma _{E,\theta }$
is a simply connected complex submanifold of
$T^{\ast }U$
, we can apply Proposition 6.11 to
$(E,\theta )$
.
6.2.1 Special case
Let us study the case that
$D=\{0\}$
, and that
$\Sigma _{V,\theta }$
is connected. We set
$\mathcal{V}=E(\ast 0)$
. We use the notation in §5.1.1. By choosing an
$r$
-th root of
$(\pi \circ \rho )^{\ast }(z)$
on
$\widetilde{\Sigma }_{E,\theta }$
, we obtain a holomorphic isomorphism
$\psi :\widetilde{\Sigma }_{E,\theta }\to U^{(r)}$
such that
$\varphi _r\circ \psi =\pi \circ \rho$
. There exists the decomposition (41) on
$U^{(r)}$
. There exists the natural isomorphism
$\psi _{\ast }(L)(\ast 0)\simeq \mathcal{V}_{\beta (1)}$
. Let
$E_{\beta (1)}\subset \mathcal{V}_{\beta (1)}$
denote the image of
$L$
. We have
$\varphi _{r\ast }(E_{\beta (1)})=E$
.
Let
$C_{\beta (1)}: \mathcal{V}_{\beta (1)}\otimes \mathcal{V}_{\beta (1)} \longrightarrow \mathcal{O}_{U^{(r)}}(\ast 0)$
be a non-degenerate symmetric pairing. There exists the morphism
${\mathop{\textrm{tr}}\nolimits }:\varphi _{r\ast }\mathcal{O}_{U^{(r)}}(\ast 0)\to \mathcal{O}_{U}(\ast 0)$
as in §2.2.2. We obtain the induced symmetric pairing
$\Psi (C_{\beta (1)})={\mathop{\textrm{tr}}\nolimits }\circ \varphi _{r\ast }(C_{\beta (1)})$
of
$\mathcal{V}=\varphi _{r\ast }(\mathcal{V}_{\beta (1)})$
. There exists an integer
$k$
such that
$C_{\beta (1)}(E_{\beta (1)}\otimes E_{\beta (1)}) =\mathcal{O}_{U^{(r)}}(k\{0\})$
.
Lemma 6.13. The pairing
$\Psi (C_{\beta (1)})$
induces a symmetric pairing of
$E$
if and only if
$k\leqslant r-1$
. The induced pairing is non-degenerate if and only if
$k=r-1$
.
Proof.
There exists a frame
$v$
of
$E_{\beta (1)}$
such that
$C_{\beta (1)}(v,v)=\zeta ^{-k}$
. The tuple
$v,\zeta v,\ldots, \zeta ^{r-1}v$
induces a frame of
$E$
. Note that
${\mathop{\textrm{tr}}\nolimits }(\zeta ^j)=0$
unless
$j\in r\mathbb{Z}$
. It is easy to see that

are holomorphic at
$0$
if and only if
$k\leqslant r-1$
, and that the induced pairing is non-degenerate at
$0$
if and only if
$k=r-1$
.
Let
$C_{0,\beta (1)}$
be a non-degenerate symmetric pairing of
$\mathcal{V}_{\beta (1)}$
such that
$C_{0,\beta (1)}(E_{\beta (1)}\otimes E_{\beta (1)}) =\mathcal{O}_{U^{(r)}}((r-1)\{0\})$
. We set
$C_{0}=\Psi (C_{0,\beta (1)})$
which is a non-degenerate symmetric pairing of
$(E,\theta )$
. Let
$h_0$
be a decoupled harmonic metric of
$(V,\theta )$
compatible with
$C_0$
. We note that
$\det (h_0)$
is compatible with
$\det (C_0)$
, and hence it induces a Hermitian metric of
$\det (E)$
.
Let
$h_1$
be any decoupled harmonic metric of
$(V,\theta )$
such that
$\mathcal{P}^{h_1}(V)=\mathcal{V}$
and that
$\det (h_1)=\det (h_0)$
. According to Corollary 5.22, there exists a holomorphic function
$\gamma _1$
on
$U^{(r)}$
such that (i)
$\varphi _r^{\ast }(h_1)_{|V_{\beta (1)}} =\exp (2{\mathop{\textrm{Re}}\nolimits }\gamma _1) \varphi _r^{\ast }(h_0)_{|V_{\beta (1)}}$
and (ii)
$\sum _{\sigma \in \mathop{\textrm{Gal}}\nolimits (r)} \sigma ^{\ast }\gamma _1=0$
. We set

It is a non-degenerate symmetric pairing of
$\mathcal{V}_{\beta (1)}$
satisfying
$C_{1,\beta (1)}(E_{\beta (1)}\otimes E_{\beta (1)}) =\mathcal{O}_{U^{(r)}}((r-1)\{0\})$
. We obtain a non-degenerate symmetric pairing
$C_1=\Psi (C_{1,\beta (1)})$
of
$(E,\theta )$
such that
$C_{1|U^{\ast }}$
is compatible with
$h_1$
.
Let
$h$
be any decoupled harmonic metric of
$(V,\theta )$
such that
$\mathcal{P}^h(V)=\mathcal{V}$
and that
$\det (h)$
induces a flat metric of
$\det (E)$
. There exists a holomorphic function
$\gamma _2$
on
$U$
such that
$\det (h)=\exp (2r{\mathop{\textrm{Re}}\nolimits }(\gamma _2))\det (h_1)$
. Then,
$C=\exp (2\gamma _2)C_1$
is compatible with
$h$
, and it induces a non-degenerate symmetric pairing of
$E$
.
Lemma 6.14.
Let
$C'$
be a non-degenerate symmetric pairing of
$(V,\theta )$
compatible with
$h$
. Then,
$C'$
induces a non-degenerate symmetric pairing of
$E$
.
Proof.
There exist non-degenerate symmetric pairings
$C_{\beta (1)}$
and
$C'_{\beta (1)}$
of
$\mathcal{V}_{\beta (1)}$
such that
$\Psi (C_{\beta (1)})=C$
and
$\Psi (C'_{\beta (1)})=C'$
, respectively. Because both
$C_{\beta (1)}$
and
$C'_{\beta (1)}$
are compatible with
$\varphi _r^{\ast }(h)_{|V_{\beta (1)}}$
, there exists a constant
$\alpha$
such that
$|\alpha |=1$
and
$C'_{\beta (1)}=\alpha C_{\beta (1)}$
. Hence,
$C'_{\beta (1)}(E_{\beta (1)}\otimes E_{\beta (1)}) =\mathcal{O}_{U^{(r)}}((r-1)\{0\})$
, and hence
$C'$
induces a non-degenerate symmetric pairing of
$E$
.
6.2.2 Proof of Proposition 6.11
It is enough to consider the case where
$\Sigma _{V,\theta }$
is connected, which implies that
$\widetilde{\Sigma }_{E,\theta }$
is connected. Let
$h_{L}$
denote the flat metric of
$L_{|\Sigma _{V,\theta }}$
corresponding to the decoupled harmonic metric
$h$
. Let
$P$
be any point of
$D$
. By Proposition 5.25, there exists a non-degenerate symmetric pairing of
$V_{|U_P^{\ast }}$
which is compatible with
$h_{|U_P^{\ast }}$
. There exists a non-degenerate symmetric pairing of
$L$
on
$(\pi \circ \rho )^{-1}(U_P^{\ast })$
which is compatible with
$h_L$
. Hence, the monodromy of the Chern connection of
$h_{L}$
around any point of
$\widetilde{D}$
is
$1$
or
$-1$
. Because
$\widetilde{\Sigma }_{E,\theta }$
is simply connected, Lemma 2.7 implies that there exists a non-degenerate symmetric pairing
$C_{L}$
of
$L_{|\Sigma _{V,\theta }}$
compatible with
$h_{L}$
. It induces a non-degenerate symmetric pairing
$C$
of
$(V,\theta )$
compatible with
$h$
. By Lemma 6.14,
$C$
induces a non-degenerate symmetric pairing of
$E$
. Thus, we obtain the first claim of Proposition 6.11. The second claim also follows from Lemma 6.14.
6.3 A uniform estimate in the symmetric case
6.3.1 Setting
For
$R\gt 0$
, we set
$B(R)=\bigl \{z\in \mathbb{C}\,\big |\,|z|\lt R\bigr \}$
. Let
$\mathcal{S}\subset \mathbb{C}^n$
be a connected open subset with a base point
$x_0$
. Let
$\mathcal{Z}_i$
$(i=1,2)$
be an open subset of
$\mathcal{S}\times \mathbb{C}_{z_i}$
. For simplicity, we assume that
$\mathcal{Z}_2=\mathcal{S}\times B(2)$
. Let
$p_i:\mathcal{Z}_i\to \mathcal{S}$
denote the projections. We set
$T^{\ast }(\mathcal{Z}_2/\mathcal{S})=\mathcal{S}\times T^{\ast }B(2)$
. Let
$\pi _2:T^{\ast }(\mathcal{Z}_2/\mathcal{S})\to \mathcal{Z}_2$
denote the projection. Let
$\Phi _0:\mathcal{Z}_1\to T^{\ast }(\mathcal{Z}_2/\mathcal{S})$
be a holomorphic map such that
$p_1=p_2\circ \pi _2\circ \Phi _0$
. We set
$\Phi _1:=\pi _2\circ \Phi _0:\mathcal{Z}_1\to \mathcal{Z}_2$
. We assume the following conditions:
-
–
$\Phi _1$ is proper and finite;
-
– there exists a complex analytic closed hypersurface
$\mathcal{D}\subset \mathcal{S}\times B(R_1)\subset \mathcal{Z}_2$ for some
$0\lt R_1\lt 1$ such that (i) the induced map
$\mathcal{Z}_1\setminus \Phi _1^{-1}(\mathcal{D}) \longrightarrow \mathcal{Z}_2\setminus \mathcal{D}$ is a covering map, (ii)
$\Phi _0$ induces an injection
$\mathcal{Z}_1\setminus \Phi _1^{-1}(\mathcal{D})\to T^{\ast }(\mathcal{Z}_2\setminus \mathcal{D})$ and (iii)
$\mathcal{D}\cap (\{x_0\}\times \mathbb{C})=\{(x_0,0)\}$ .
We set
$r:=|\Phi _1^{-1}(P)|$
for any
$P\in \mathcal{Z}_2\setminus \mathcal{D}$
. We also set
$\widetilde{\mathcal{D}}=\Phi _1^{-1}(\mathcal{D})$
.
Lemma 6.15. The sheaf
$\mathcal{E}=\Phi _{1\ast }(\mathcal{O}_{\mathcal{Z}_1})$
is a locally free
$\mathcal{O}_{\mathcal{Z}_2}$
-module of rank
$r$
.
Proof.
By a change of local holomorphic coordinate system on
$\mathcal{Z}_1$
, it is enough to consider the case where
$\Phi _1^{\ast }(z_2)$
is expressed as a Weierstrass polynomial. Then, it is reduced to [Reference Grauert and RemmertGR84, Chapter 2, §4.2, Theorem].
Note that
$\mathcal{E}=\pi _{2\ast }(\Phi _{0\ast }\mathcal{O}_{\mathcal{Z}_1})$
is naturally a
$\pi _{2\ast }(\mathcal{O}_{T^{\ast }(\mathcal{Z}_2/\mathcal{S})})$
-module. Hence, we obtain the relative Higgs field
$\theta :\mathcal{E}\to \mathcal{E}\otimes \Omega ^1_{\mathcal{Z}_2/\mathcal{S}}$
. The following lemma is clear by the construction.
Lemma 6.16.
For any
$P\in \mathcal{Z}_2\setminus \mathcal{D}$
, there exist a neighbourhood
$\mathcal{U}$
of
$P$
in
$\mathcal{Z}_2\setminus \mathcal{D}$
and a decomposition

where
$\mathop{\textrm{rank}}\nolimits \mathcal{E}_{P,i}=1$
, and
$\theta _{P,i}-\theta _{P,j}$
$(i\neq j)$
are nowhere vanishing.
For any
$x\in \mathcal{S}$
, we set
$\mathcal{Z}_{i,x}=\mathcal{Z}_i\cap (\{x\}\times \mathbb{C})$
,
$\widetilde{\mathcal{D}}_x=\widetilde{\mathcal{D}}\cap (\{x\}\times \mathbb{C})$
and
$\mathcal{D}_x=\mathcal{D}\cap (\{x\}\times \mathbb{C})$
. Note that
$\mathcal{Z}_{2,x}=B(2)$
for any
$x\in \mathcal{S}$
. Let
$\iota _x:\mathcal{Z}_{2,x}\to \mathcal{Z}_2$
denote the inclusion. We obtain the Higgs bundles
$(\mathcal{E}_x,\theta _x):=\iota _x^{\ast }(\mathcal{E},\theta )$
on
$\mathcal{Z}_{2,x}$
which is regular semisimple outside
$\mathcal{D}_{x}$
.
6.3.2 A uniform estimate in the symmetric case
Let
$h^{\circ }_{x}$
$(x\in \mathcal{S})$
be decoupled harmonic metrics of
$(\mathcal{E}_{x},\theta _{x}) _{|B(2)\setminus \mathcal{D}_{x}}$
such that they induce a
$C^{\infty }$
-metric of
$\mathcal{E}_{|\mathcal{Z}_2\setminus \mathcal{D}}$
. Assume the following.
Condition 6.17.
For each
$(x,P)\in \mathcal{D}$
, Condition 6.10 is satisfied for
$(\mathcal{E}_x,\theta _x,h^{\circ }_x)$
at
$P$
.
Let
$h_{x,t}$
be harmonic metrics of
$(\mathcal{E}_x,t\theta _x)_{|B(1)}$
such that
$h_{x,t|{\partial } B(1)}=h^{\circ }_{x|{\partial } B(1)}$
. Let
$s_{x,t}$
be the automorphism of
$\mathcal{E}_{x|B(1)\setminus \mathcal{D}_x}$
determined by
$h_{x,t}=h^{\circ }_{x}\cdot s_{x,t}$
.
Proposition 6.18.
Let
$R_1\lt R_2\lt 1$
. Let
$\mathcal{S}'$
be a relatively compact open subset of
$\mathcal{S}$
. Then, there exists
$t_0\gt 0$
such that the following hold.
-
– For any
$\ell \in \mathbb{Z}_{\geqslant 0}$ , there exist positive constants
$C(\ell )$ and
$\epsilon (\ell )$ such that
\begin{align*} \bigl | (s_{x,t}-{\mathop {\textrm {id}}\nolimits })_{|B(R_2)\setminus B(R_1)}\bigr |_{L_{\ell }^2} \leqslant C(\ell )\exp (-\epsilon (\ell ) t) \end{align*}
$x\in \mathcal{S}'$ and any
$t\geqslant t_0$ . Here, we consider the
$L_{\ell }^2$ -norms with respect to
$h^{\circ }_x$ and the standard Euclidean metric
$dz_2\,d{\overline{z}}_2$ .
Proof.
For
$0\lt R\leqslant 2$
, we set
$\mathcal{Z}_{1,x}(R):=\Phi _1^{-1}(\{x\}\times B(R)) \subset \mathcal{Z}_{1,x}$
.
Lemma 6.19.
If
$R_1\lt R\leqslant 2$
, each connected component of
$\mathcal{Z}_{1,x}(R)$
is diffeomorphic to a two
$2$
-dimensional disc.
Proof.
Let us consider the case
$R_1\lt R\lt 2$
. We set
$\mathcal{Z}_{1}(R):=\Phi _1^{-1}(\mathcal{S}\times B(R)) \subset \mathcal{Z}$
. The closure
$\overline{\mathcal{Z}}_1(R)$
of
$\mathcal{Z}_1(R)$
is a
$C^{\infty }$
-manifold with smooth boundary. The projection
$\overline{\mathcal{Z}}_{1}(R)\to \mathcal{S}$
is submersive and proper. Each connected component of
$\mathcal{Z}_{1,x_0}(R)$
is diffeomorphic to a disc. Because
$\mathcal{S}$
is connected, we obtain that each connected component of
$\mathcal{Z}_{1,x}(R)$
is diffeomorphic to a disc. For
$R_1\lt R\lt 2$
, there exists a diffeomorphism
$\rho _R:B(R)\simeq B(2)$
whose restriction to
$B(R_1)$
is the identity. We can construct a diffeomorphism
$\mathcal{Z}_{1,x}(R)\simeq \mathcal{Z}_{1,x}(2)$
by lifting
$\rho _R$
.
Lemma 6.20.
There exist holomorphic non-degenerate symmetric pairings
$C_x$
$(x\in \mathcal{S})$
of
$(\mathcal{E}_{x},\theta _{x})$
such that the restrictions
$C_{x|B(1)\setminus \mathcal{D}_{x}}$
are compatible with
$h^{\circ }_x$
and continuous with respect to
$x$
.
Proof.
Let
$h^{\circ }_{0,x}$
denote the flat metric of
$\mathcal{O}_{\mathcal{Z}_{1,x}\setminus \widetilde{\mathcal{D}}_{x}}$
corresponding to
$h^{\circ }_x$
, which are continuous with respect to
$x$
. Let
$\nabla ^{\circ }_{0,x}$
denote the Chern connection. They are flat connections, and continuous with respect to
$x$
.
By Proposition 6.11 and Lemma 6.19, for each
$x\in \mathcal{S}$
, there exists a holomorphic non-degenerate symmetric pairing
$C'_x$
of
$(\mathcal{E}_{x},\theta _{x})$
such that the restriction
$(C'_{x})_{|B(1)\setminus \mathcal{D}_{x}}$
is compatible with
$h^{\circ }_x$
. Let
$C'_{0,x}$
denote the holomorphic non-degenerate symmetric bilinear form of
$\mathcal{O}_{\mathcal{Z}_{1,x}\setminus \widetilde{\mathcal{D}}_{x}}$
corresponding to
$C'_x$
, which is compatible with
$h^{\circ }_{0,x}$
.
Let
$z_1\in B(1)\setminus B(R_1)$
. There exists a continuous family of non-degenerate symmetric pairings
$C^{\circ }_{0,(x,z_1)}$
of the vector space
$\mathcal{O}_{\mathcal{Z}_1|(x,z_1)}$
which are compatible with
$(h^{\circ }_{0,x})_{|z_1}$
. We obtain
$\alpha _x\in \mathbb{C}^{\ast }$
determined by
$C^{\circ }_{0,(x,z_1)}=\alpha _x (C'_{0,x})_{|z_1}$
. We set
$C_{0,x}=\alpha _x C'_{0,x}$
. Because
$C_{0,x}$
are
$\nabla ^{\circ }_{0,x}$
-flat, they are continuous with respect to
$x$
. Let
$C_{x}$
denote the non-degenerate symmetric pairing of
$(\mathcal{E}_x,\theta _x)$
corresponding to
$C_{0,x}$
. (See Proposition 6.11.) Then, they satisfy the desired condition.
Because
$h_{t,x|{\partial } B(1)}=h^{\circ }_{x|{\partial } B(1)}$
are compatible with
$C_{x|{\partial } B(1)}$
, we obtain that
$h_{t,x}$
are compatible with
$C_x$
. Then, the claim of Proposition 6.18 follows from Theorem3.4.
We also obtain the following proposition from Theorem3.4, as in the proof of Proposition 6.18.
Proposition 6.21.
Let
$R_1\lt R_2\lt 2$
. Let
$\mathcal{S}'$
be a relatively compact open subset of
$\mathcal{S}$
. There exists
$t_0\gt 0$
such that the following holds.
-
– Let
$h'_{x,t}$ be any harmonic metrics of
$(\mathcal{E}_x,t\theta _x)$
$(x\in \mathcal{S}')$ compatible with
$C^{\circ }_x$ . Let
$s'_{x,t}$ be determined by
$h'_{x,t}=h^{\circ }_x\cdot s'_{x,t}$ . Then, for any
$\ell \in \mathbb{Z}_{\geqslant 0}$ , there exist positive constants
$C(\ell )$ and
$\epsilon (\ell )$ such that
\begin{align*} \bigl | (s'_{x,t}-{\mathop {\textrm {id}}\nolimits })_{|B(R_2)\setminus B(R_1)}\bigr |_{L_{\ell }^2} \leqslant C(\ell )\exp (-\epsilon (\ell ) t), \end{align*}
$t\geqslant t_0$ .
6.3.3 Examples of non-degenerate symmetric pairings and decoupled harmonic metrics
We obtain a holomorphic function
$G={\partial }_{z_1}(\Phi _1^{\ast }(z_2))$
. We have
$G^{-1}(0)\subset \widetilde{\mathcal{D}}$
. We define the symmetric product
$C_0:\mathcal{O}_{\mathcal{Z}_1}\otimes \mathcal{O}_{\mathcal{Z}_1} \longrightarrow G^{-1}\mathcal{O}_{\mathcal{Z}_1}$
by

We obtain the following lemma by using Lemma 6.13.
Lemma 6.22. The pairing
$C_0$
induces a non-degenerate symmetric pairing
$C_1$
of
$\mathcal{E}$
, which induces a non-degenerate symmetric pairing of
$(\mathcal{E}_x,\theta _x)$
for any
$x\in \mathcal{S}$
.
Let
$h_0$
be the flat metric of
$\mathcal{O}_{\mathcal{Z}_1\setminus \widetilde{\mathcal{D}}}$
defined as follows:

Lemma 6.23. The metric
$h_0$
induces a flat metric
$h_1$
of
$\mathcal{E}_{|\mathcal{Z}_2\setminus \mathcal{D}}$
. For each
$x\in \mathcal{S}$
, the induced metric
$h_{1,x}$
of
$(\mathcal{E}_x,\theta _x)_{|\mathcal{Z}_{2,x}\setminus \mathcal{D}_{x}}$
is a decoupled harmonic metric such that
$\det (h_{1,x})$
induces a flat metric of
$\det (\mathcal{E}_{x})$
for each
$x\in \mathcal{S}$
.
Remark 6.24. We shall use
$h_0$
in §7.3.
7. Large-scale solutions on compact Riemann surfaces
7.1 Convergence in the locally irreducible case
7.1.1 Statement
Let
$X$
be a compact Riemann surface. Let
$\pi :T^{\ast }X\to X$
denote the projection. For any
$A\subset T^{\ast }X$
, the induced map
$A\to X$
is also denoted by
$\pi$
. Let
$D\subset X$
be a finite subset.
Let
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
be a good filtered Higgs bundle of degree
$0$
on
$(X,D)$
. We obtain the Higgs bundle
$(V,\theta )=(\mathcal{V},\theta )_{|X\setminus D}$
. We assume the following.
Condition 7.1. The Higgs bundle
$(V,\theta )$
is a regular semisimple Higgs bundle on
$X\setminus D$
.
Remark 7.2. If
$(V,\theta )$
is generically regular semisimple, there exists a finite subset
$D'\subset X$
such that
$(V',\theta ')_{|X\setminus D'}$
is regular semisimple and that
$D\subset D'$
. We set
$\mathcal{V}'=\mathcal{V}(\ast D')$
. For each
$P\in D'\setminus D$
, we consider the filtered bundle
$\mathcal{P}_{\ast }(\mathcal{V}'_P)$
over
$\mathcal{V}'_P$
defined by
$\mathcal{P}_a\mathcal{V}'_P =\mathcal{V}_P([a]P)$
, where
$[a]=\max \{n\in \mathbb{Z}\,|\,n\leqslant a\}$
. For harmonic metrics of
$(V,t\theta )$
adapted to
$\mathcal{P}_{\ast }\mathcal{V}$
, it is enough to study harmonic metrics of
$(V',t\theta ')$
adapted to
$\mathcal{P}_{\ast }\mathcal{V}'$
.
For any
$P\in D$
, there exist a neighbourhood
$X_P$
of
$P$
in
$X$
and a decomposition of the meromorphic Higgs bundle

such that the spectral curves of
$(\mathcal{V}_{P,i},\theta _{P,i})_{|X_P\setminus \{P\}}$
are connected.
Condition 7.3. We assume the following conditions:
-
– the spectral curve
$\Sigma _{V,\theta }$ is connected;
-
– for any
$P\in D$ , the decomposition ( 48 ) is compatible with the filtered bundle
$\mathcal{P}_{\ast }(\mathcal{V}_P)$ over
$\mathcal{V}_P$ , i.e.
$\mathcal{P}_{\ast }(\mathcal{V}_P) =\bigoplus _{i\in S(P)}\mathcal{P}_{\ast }\bigl ( (\mathcal{V}_{P,i})_P\bigr )$ .
For each
$P\in D$
, we obtain the filtered bundle
$\mathcal{P}^{\star }_{\ast }(\mathcal{V}_{P}) =\bigoplus _{i\in S(P)} \mathcal{P}^{\star }_{\ast }\bigl ( (\mathcal{V}_{P,i})_P\bigr )$
over
$\mathcal{V}_{P}$
determined by the filtered bundles
$\det (\mathcal{P}_{\ast }\mathcal{V}_{P,i})$
as in Proposition 5.13. By patching
$\mathcal{P}^{\star }_{\ast }(\mathcal{V}_{P})$
$(P\in D)$
with
$\mathcal{V}$
, we obtain a decomposable filtered Higgs bundle
$(\mathcal{P}^{\star }_{\ast }(\mathcal{V}),\theta )$
.
Lemma 7.4. The filtered Higgs bundle
$(\mathcal{P}^{\star }_{\ast }(\mathcal{V}),\theta )$
is stable of degree
$0$
. As a result, there exists a decoupled harmonic metric
$h_{\infty }$
of
$(V,\theta )$
adapted to
$\mathcal{P}^{\star }_{\ast }(\mathcal{V})$
.
Proof.
Because
$\Sigma _{V,\theta }$
is connected, there does not exist a non-trivial Higgs subbundle of
$(V,\theta )$
. Hence,
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is stable. Because
$\det (\mathcal{P}^{\star }_{\ast }\mathcal{V}) =\det (\mathcal{P}_{\ast }\mathcal{V})$
, we obtain
$\deg (\mathcal{P}^{\star }_{\ast }\mathcal{V})=0$
. The second claim follows from Proposition 5.34.
Note that
$\det (h_{\infty })$
is a flat metric of
$\det (V)$
adapted to
$\det (\mathcal{P}_{\ast }\mathcal{V})=\det (\mathcal{P}^{\star }_{\ast }\mathcal{V})$
. Because
$\Sigma _{V,\theta }$
is connected,
$(\mathcal{P}_{\ast }\mathcal{V},\theta )$
is stable of degree
$0$
as in Lemma 7.4. Hence, for any
$t\gt 0$
, there exists a harmonic metric
$h_t$
of
$(V,t\theta )$
which is adapted to
$\mathcal{P}_{\ast }\mathcal{V}$
such that
$\det (h_t)=\det (h_{\infty })$
.
Theorem 7.5.
On any relatively compact open subset
$K\subset X\setminus D$
, the sequence
$h_{t}$
is convergent to
$h_{\infty }$
in the
$C^{\infty }$
-sense.
7.1.2 The case of locally and globally irreducible Higgs bundles
We state Theorem7.5 in a special case for clarification (see also Remark 7.2). Let
$(E,\overline{\partial }_E,\theta )$
be a generically regular semisimple Higgs bundle of degree
$0$
on
$X$
. Let
$\Sigma _{E,\theta }$
denote the spectral curve. There exists the finite subset
$D(E,\theta )\subset X$
such that the following holds:
-
–
$P\in D(E,\theta )$ if and only if
$|T_P^{\ast }X\cap \Sigma _{E,\theta }|\lt r$ .
We impose the following condition.
Condition 7.6.
-
– The spectral curve
$\Sigma _{E,\theta }$ is irreducible, i.e.
$\Sigma _{E,\theta }\setminus \pi ^{-1}(D(E,\theta ))$ is connected.
-
– For any
$P\in D(E,\theta )$ , there exist a neighbourhood
$X_P$ of
$P$ in
$X$ and a decomposition
(49)such that the spectral curves\begin{align} (E,\theta )_{|X_P} =\bigoplus _{i\in S(P)} (E_{P,i},\theta _{P,i}), \end{align}
$\Sigma _{E_{P,i},\theta _{P,i}}$ are irreducible.
We set
$D=D(E,\theta )$
. Let
$\mathcal{P}^{(0)}_{\ast }(E(\ast D)_P)$
be the filtered bundle over
$E(\ast D)_P$
defined by
$\mathcal{P}^{(0)}_a(E(\ast D)_P)=E_P([a]P)$
, where
$[a]=\max \{n\in \mathbb{Z}\,|\,n\leqslant a\}$
. Because there exists the decomposition

induced by (49), we obtain the filtered bundle
$\mathcal{P}^{\star }_{\ast }(E(\ast D)_P)$
determined by
$\det (\mathcal{P}^{(0)}_{\ast }E_{P,i}(\ast D)_P)$
as in Proposition 5.13. By patching them with
$(E(\ast D),\theta )$
, we obtain a filtered bundle
$\mathcal{P}^{\star }_{\ast }\mathcal{V}$
over
$\mathcal{V}=E(\ast D)$
. The filtered Higgs bundle
$(\mathcal{P}^{\star }_{\ast }(E(\ast D)),\theta )$
is decomposable.
As in Lemma 7.4, there exists a decoupled harmonic metric
$h_{\infty }$
of
$(E,\theta )_{|X\setminus D}$
such that
$h_{\infty }$
is adapted to
$\mathcal{P}^{\star }_{\ast }\mathcal{V}$
. For any
$t\gt 0$
, there exists a unique harmonic metric
$h_t$
of
$(E,t\theta )$
such that
$\det (h_t)=\det (h_{\infty })$
. As a special case of Theorem7.5, we obtain the following.
Corollary 7.7.
On any relatively compact open subset
$K\subset X\setminus D$
, the sequence
$h_{t}$
is convergent to
$h_{\infty }$
in the
$C^{\infty }$
-sense.
Remark 7.8. The second condition in Condition 7.6 is satisfied if
$\Sigma _{E,\theta }$
is locally irreducible.
7.1.3 Proof of Theorem7.5
Let
$P\in D$
. We set
$X_P^{\ast }=X_P\setminus \{P\}$
. We set
$V_{P,i}=\mathcal{V}_{P,i|X_P^{\ast }}$
and
$r(P,i)=\mathop{\textrm{rank}}\nolimits V_{P,i}$
. Let
$z_P$
be a holomorphic coordinate of
$X_P$
by which
$X_P\simeq \bigl \{z\in \mathbb{C}\,\big |\,|z|\lt 2\bigr \}$
. We set
$(h_{\infty })_{P,i}:=h_{\infty |V_{P,i}}$
. Let
$h_{t,P,i}$
be a harmonic metric of
$(V_{P,i},t\theta _{P,i})$
such that (i) the boundary value at
$|z_P|=1$
is equal to that of
$(h_{\infty })_{P,i}$
and (ii)
$h_{t,P,i}$
is adapted to
$\mathcal{P}_{\ast }\mathcal{V}_{P,i}$
. We have
$\det (h_{t,P,i})=\det ((h_{\infty })_{P,i})$
. We obtain the following lemma by Proposition 6.6.
Lemma 7.9.
The sequence
$h_{t,P,i}$
is convergent to
$(h_{\infty })_{P,i}$
as
$t\to \infty$
in the
$C^{\infty }$
-sense on any relatively compact open subset of
$X_P^{\ast }$
.
We regard
$X_P$
as an open subset of
$\mathbb{C}$
by the coordinate
$z_P$
. Let
$\varphi _{P,r(P,i)}:\mathbb{C}\to \mathbb{C}$
be defined by
$\varphi _{P,r(P,i)}(\zeta _{P,i})=\zeta _{P,i}^{r(P,i)}$
. We set
$X_P^{(r(P,i))}=\varphi _{P,r(P,i)}^{-1}(X_P)$
and
$X_P^{(r(P,i))\ast }=\varphi _{P,r(P,i)}^{-1}(X_P^{\ast })$
. The induced maps
$X_P^{(r(P,i))}\to X_P$
and
$X_P^{(r(P,i))\ast }\to X_P^{\ast }$
are also denoted by
$\varphi _{P,r(P,i)}$
.
We define a Hermitian product
$h_{t,P,i}^{(r(P,i))}$
of
$\varphi _{P,r(P,i)}^{\ast }(V_{P,i})_{|X_P^{(r(P,i))\ast }}$
as follows. We have the decomposition

where
$\beta (p)$
are meromorphic functions on
$X_P^{(r(P,i))}$
. Let
$v_{\beta (1)}$
be a holomorphic frame of
$V_{P,i,\beta (1)}$
. We obtain a frame
$v_{\sigma ^{\ast }\beta (1)}=\sigma ^{\ast }(v_{\beta (1)})$
of
$V_{P,i,\sigma ^{\ast }\beta (1)}$
. Let
$\chi (\zeta _{P,i})$
be an
$\mathbb{R}_{\geqslant 0}$
-valued function such that (i)
$\chi (\zeta _{P,i})$
depends only on
$|\zeta _{P,i}|$
and (ii)
$\chi (\zeta _{P,i})=1$
$(|\zeta _{P,i}|\leqslant 1/2)$
,
$\chi (\zeta _{P,i})=0$
$(|\zeta _{P,i}|\geqslant 2/3)$
. For
$p\neq q$
, we put

We define
$h_{t,P,i}^{(r(P,i))}(v_{\beta (p)},v_{\beta (p)})$
by

Then,
$h^{(r(P,i))}_{t,P,i}$
is
$\mathop{\textrm{Gal}}\nolimits (r(P,i))$
-invariant, and we have
$h^{(r(P,i))}_{t,P,i}=\varphi _{P,r(P,i)}^{-1}(h_{t,P,i})$
on
$\{0\lt |\zeta _{P,i}|\lt 1/4\}$
and
$h^{(r(P,i))}_{t,P,i} =\varphi _{P,r(P,i)}^{-1}\bigl ((h_{\infty })_{P,i}\bigr )$
on
$\{4/5\lt |\zeta _{P,i}|\}$
. There exists a Hermitian metric
$\widetilde{h}_{t,P,i}$
of
$V_{P,i}$
such that
$\varphi _{P,r(P,i)}^{-1}(\widetilde{h}_{t,P,i}) =h^{(r(P,i))}_{t,P,i}$
on
$X_P^{(r(P,i))\ast }$
. We obtain a Hermitian metric

of
$V_{|X_P^{\ast }}$
. By patching
$\widetilde{h}_{t,P}$
and
$h_{\infty }$
, we obtain Hermitian metrics
$\widetilde{h}'_{t}$
of
$V$
. We obtain the
$C^{\infty }$
-function
$\alpha _t$
on
$X\setminus D$
determined by
$\det (\widetilde{h}'_t)=e^{\alpha _t}\det (h_{\infty })$
. We set
$\widetilde{h}_t=e^{-\alpha _t/r}\widetilde{h}'_t$
. By the construction, the following lemma is clear.
Lemma 7.10.
There exists
$t_0$
such that
$\widetilde{h}_{t}$
is positive definite for any
$t\geqslant t_0$
. Moreover, the following holds.
-
– The sequence
$\widetilde{h}_t$ is convergent to
$h_{\infty }$ in the
$C^{\infty }$ -sense on any relatively compact open subset of
$X\setminus D$ . The support of
$R(\widetilde{h}_{t})+ [t\theta, (t\theta )^{\dagger }_{\widetilde{h}_{t}}]$ is contained in
$\{\left ({1 \over 4}\right )^{\mathop{\textrm{rank}}\nolimits (E)} \leqslant |z_P|\leqslant {4 \over 5}\}$ for
$P\in D$ . In particular,
(51)as\begin{align} \int _X \Bigl | R(\widetilde{h}_{t})+[t\theta, (t\theta )^{\dagger }_{\widetilde{h}_{t}}] \Bigr |_{\widetilde{h}_{t},g_X} \to 0, \end{align}
$t\to \infty$ .
Let
$g_X$
be a Kähler metric of
$X$
. Let
$s_{t}$
denote the automorphism of
$V$
determined by
$h_t=\widetilde{h}_{t}s_{t}$
. We have
$\det (s_{t})=1$
. According to [Reference SimpsonSim88, Lemma 3.1], we obtain the following on
$X\setminus D$
:

Note that
$\bigoplus _{i\in S(P)} h_{t,P,i}$
and
$h_{t|X_P^{\ast }}$
are mutually bounded for any
$P\in D$
. Hence,
${\mathop{\textrm{Tr}}\nolimits }(s_t)$
is bounded. We also note the following vanishing (see Lemma [Reference MochizukiMoc21, Lemma 4.7]):

We set
$b_{t}=\sup _{X\setminus D}{\mathop{\textrm{Tr}}\nolimits }(s_{t})$
. Note that
$b_{t}\geqslant \mathop{\textrm{rank}}\nolimits (E)$
, and
$b_t=\mathop{\textrm{rank}}\nolimits (E)$
if and only if
$s_t={\mathop{\textrm{id}}\nolimits }_E$
. We set
$u_{t}=b_{t}^{-1}\cdot s_{t}$
. There exists
$C\gt 0$
, which is independent of
$t$
such that
$|u_{t}|_{\widetilde{h}_{t}}\leqslant C$
. By (51), (52) and (53) we obtain

as
$t\to \infty$
.
Let
$t(i)\gt 0$
be a sequence such that
$t(i)\to \infty$
as
$i\to \infty$
. By going to a subsequence,
$u_{t(i)}$
is weakly convergent in
$L_1^2$
locally on
$X\setminus D$
. In particular, it is convergent in
$L^q$
for any
$q\geqslant 1$
locally on
$X\setminus D$
. Let
$u_{\infty }$
denote the limit which satisfies
$\overline{\partial } u_{\infty }=[\theta, u_{\infty }]=0$
.
Lemma 7.11. We have
$u_{\infty }\neq 0$
.
Proof.
Note that
$\sup _X{\mathop{\textrm{Tr}}\nolimits }(u_{t(i)})=1$
for any
$i$
. Let
$0\lt \epsilon \lt 1$
. Let
$P_{i}\in X$
be points such that
${\mathop{\textrm{Tr}}\nolimits }(u_{t})(P_{i})\geqslant \epsilon$
. By going to a subsequence, we may assume that the sequence is convergent to a point
$P_{\infty }$
. Let us consider the case where

Let
$(X_{P_{\infty }},z)$
be a holomorphic coordinate neighbourhood around
$P_{\infty }$
, which does not intersect with
$W$
. Because
$F(\widetilde{h}_{t})=0$
on
$X_{P_{\infty }}$
, we obtain
$\Delta _{g_X}{\mathop{\textrm{Tr}}\nolimits }(u_{t})\leqslant 0$
. By the mean value property of the subharmonic functions, there exists
$C\gt 0$
such that

Because
$u_{t(i)}$
is convergent to
$u_{\infty }$
in
$L^p$
for any
$p\geqslant 1$
on
$X_{P_{\infty }}$
, we obtain that
$u_{\infty }\neq 0$
.
Let us consider the case where
$P_{\infty }\in \{|z_P|\lt 4/5\}$
for some
$P\in D$
. Let
$(X_P,z_P)$
be a holomorphic coordinate neighbourhood around
$P$
as above. By [Reference SimpsonSim88, Lemma 3.1], we have

There exist
$C^{\infty }$
-functions
$\alpha _{i}$
on
$X_{P}$
such that (i)
$\Delta _{g_X} \alpha _{i} =\Bigl |R(\widetilde{h}_{t(i)})+[t\theta, (t\theta )^{\dagger }_{\widetilde{h}_{t(i)}}] \Bigr |_{\widetilde{h}_{t(i)},g_X}$
, (ii)
$\alpha _{i|{\partial } X_{P}}=0$
and (iii) there exists
$C\gt 0$
such that
$|\alpha _{i}|\leqslant C$
for any
$i$
. Because
$\log{\mathop{\textrm{Tr}}\nolimits }(u_{t(i)})-\alpha _i$
is a subharmonic function on
$X_P$
, the maximum principle allows us to obtain

Hence, there exists a sequence
$P'_i\in{\partial } X_{P}$
such that
${\mathop{\textrm{Tr}}\nolimits }(u_{t(i)})(P'_i)\geqslant \epsilon e^{-C}$
. By going to a subsequence, we may assume that the sequence
$P'_i$
is convergent to
$P'_{\infty }\in X\setminus W$
. Then, we can apply the result in the first part of this proof.
Recall that
$u_{\infty }\neq 0$
is an endomorphism of
$(V,\theta )$
such that
$\overline{\partial } u_{\infty }=[\theta, u_{\infty }]=0$
. At each point of
$X\setminus D$
, an eigenspace of
$\theta$
is also an eigenspace of
$u_{\infty }$
. Because each
$u_{t(i)}$
is self-adjoint with respect to
$\widetilde{h}_{t}$
,
$u_{\infty }$
is self-adjoint with respect to
$h_{\infty }$
. We obtain
${\partial }_{h_{\infty }}u_{\infty }=0$
. Hence, the eigenvalues of
$u_{\infty }$
are constant. Because
$\widetilde{h}_t(u_{t(i)}v,v)\geqslant 0$
for any local section
$v$
of
$V$
, we obtain
$h_{\infty }(u_{\infty }v,v)\geqslant 0$
, which implies that the eigenvalues of
$u_{\infty }$
are non-negative. We also note that
$\Sigma _{V,\theta }$
is connected. Hence,
$u_{\infty }$
is a positive constant multiplication. This implies that the sequence
$b_{t}$
is bounded, and that the subsequence
$s_{t(i)}$
is convergent to a positive constant multiplication. Because
$\det (s_{t})=1$
, the limit is the identity. Because this is independent of the choice of a subsequence, we obtain the desired convergence.
7.2 Order of convergence in a smooth case
7.2.1 Rough statement
Let us study the order of the convergence in the situation of §7.1.2 assuming the following stronger condition.
Condition 7.12.
Let
$\rho :\widetilde{\Sigma }_{E,\theta }\to \Sigma _{E,\theta }$
be the normalization. There exists a line bundle
$L$
on
$\widetilde{\Sigma }_{E,\theta }$
with an isomorphism
$(\pi \circ \rho )_{\ast }L\simeq E$
such that
$\theta$
is induced by the
$\mathcal{O}_{T^{\ast }X}$
-action on
$\rho _{\ast }L$
.
Let
$g(\widetilde{\Sigma }_{E,\theta })$
and
$g(X)$
denote the genus of
$\widetilde{\Sigma }_{E,\theta }$
and
$X$
, respectively. Then, we have
$\deg (L)=g(\widetilde{\Sigma }_{E,\theta })-rg(X)+r-1$
.
Remark 7.13. If Condition 7.12 is satisfied, Condition 7.6 is also satisfied. Condition 7.12 is satisfied if
$\Sigma _{E,\theta }$
is smooth and connected.
We set
$(V,\theta )=(E,\theta )_{|X\setminus D}$
. Let
$s(h_{\infty },h_t)$
be the automorphism of
$V$
determined by
$h_t=h_{\infty }\cdot s(h_{\infty },h_t)$
. Let
$g_X$
be a Kähler metric of
$X$
.
Theorem 7.14.
For any relatively compact open subset
$K$
of
$X\setminus D$
and a non-negative integer
$\ell$
, there exist positive constants
$C(K,\ell )$
and
$\epsilon (K,\ell )$
such that the
$L_{\ell }^2$
-norms of
$s(h_{\infty },h_t)-{\mathop{\textrm{id}}\nolimits }_E$
on
$K$
with respect to
$h_{\infty }$
,
$g_X$
and the Chern connection of
$h_{\infty }$
are dominated by
$C(K,\ell )e^{-\epsilon (K,\ell )t}$
.
7.2.2 Refined statement
We shall prove a refined statement. For that purpose, we refine the construction of
$\widetilde{h}_t$
in the proof of Theorem7.5. Let
$P\in D$
and
$i\in S(P)$
.
Lemma 7.15. The metric
$\det ((h_{\infty })_{P,i})$
induces a flat metric of
$\det (E_{P,i})$
.
Proof.
The lemma follows from the condition that
$\det ((h_{\infty })_{P,i})$
is adapted to
$\det \mathcal{P}^{\star }_{\ast }(E_{P,i}(\ast D)_P) =\det \mathcal{P}^{(0)}_{\ast }(E_{P,i}(\ast D)_P)$
.
According to Proposition 6.11, there exists a non-degenerate symmetric pairing
$C_{P,i}$
of
$(E_{P,i},\theta _{P,i})$
such that
$C_{P,i|X_P^{\ast }}$
is compatible with
$(h_{\infty })_{P,i}$
. For
$t\gt 0$
, there exists a harmonic metric
$h_{t,P,i}$
of
$(E_{P,i},\theta _{P,i})$
which is compatible with
$C_{P,i}$
such that its boundary value at
${\partial } X_P$
is equal to that of
$h_{\infty |E_{P,i}}$
. We construct the metric
$\widetilde{h}_{t}$
by using
$h_{t,P,i}$
as in the proof of Theorem7.5 (see §7.1.3). By Proposition 6.7, the following holds.
Lemma 7.16.
Let
$s(h_{\infty },\widetilde{h}_t)$
be the automorphism of
$E_{|X\setminus D}$
determined by
$\widetilde{h}_t=h_{\infty }\cdot s(h_{\infty },\widetilde{h}_t)$
. For any relatively compact open subset
$K$
of
$X_P^{\ast }$
and for any
$\ell \in \mathbb{Z}_{\geqslant 0}$
, there exist constants
$C(K,\ell ),\epsilon (K,\ell ),t(K)\gt 0$
such that the
$L_{\ell }^2$
-norms of
$s(h_{\infty },\widetilde{h}_t)-{\mathop{\textrm{id}}\nolimits }$
on
$K$
with respect to
$h_{\infty }$
and
$g_X$
are dominated by
$C(K,\ell )\exp (-\epsilon (K,\ell )t)$
for any
$t\gt t(K)$
.
By Lemma 7.16, we obtain

for some
$\epsilon, C\gt 0$
. Moreover, by the construction, the support of (54) is contained in

Let
$s_t$
be the automorphism of
$E$
determined by
$h_t=\widetilde{h}_t\cdot s_t$
. We obtain Theorem7.14 from Lemma 7.16 and the following theorem.
Theorem 7.17.
For any
$\ell \gt 0$
, there exist
$C(\ell ),\epsilon (\ell )\gt 0$
such that the
$L_{\ell }^2$
-norms of
$s_t-{\mathop{\textrm{id}}\nolimits }$
on
$X$
with respect to
$\widetilde{h}_t$
,
$g_X$
and the Chern connection of
$\widetilde{h}_t$
are dominated by
$C(\ell )\exp (-\epsilon (\ell ) t)$
.
Proof.
By [Reference SimpsonSim88, Lemma 3.1] and (54), there exist
$C_1,\epsilon _1\gt 0$
such that

By Corollary 7.7,
$|s_{t}|_{\widetilde{h}_{t}}$
and
$|s_{t}^{-1}|_{\widetilde{h}_{t}}$
are uniformly bounded. There exist
$C_2,\epsilon _2\gt 0$
such that

Let
$K$
be a relatively compact open subset of
$X\setminus D$
. By the variant of Simpson’s main estimate ([Reference MochizukiMoc16, Theorem 2.9]) and Lemma 7.16, there exist
$C_3(K),\epsilon _3(K)\gt 0$
such that the following holds on
$K$
:

Together with (55), we obtain that there exist
$C_4(K),\epsilon _4(K)\gt 0$
such that the following holds on
$K$
:

Because
$s_{t}$
is self-adjoint with respect to
$\widetilde{h}_{t}$
, we obtain the following on
$K$
:

Lemma 7.18.
There exist
$C(K),\epsilon (K)\gt 0$
such that the following holds on
$K$
:

Proof.
Let
$P$
be any point of
$X\setminus D$
. Let
$X_P$
be a simply connected neighbourhood of
$P$
in
$X\setminus D$
. There exists a decomposition into Higgs bundles of rank
$1$
:

We obtain the decomposition
$s_{t}=\sum (s_{t})_{j,i}$
, where
$(s_{t})_{j,i}:E_{P,i}\to E_{P,j}$
. By [Reference MochizukiMoc16, Proposition2.3], there exist
$C_5(P),\epsilon _5(P)\gt 0$
such that the following for
$i\neq j$
on
$X_P$
:

By (56) and (57), there exist
$C_6(P),\epsilon _6(P)\gt 0$
such that

Hence, there exist
$C_7(P),\epsilon _7(P)\gt 0$
such that the following holds for any
$P_1,P_2\in X_P$
:

Let
$i\neq j$
. There exists a loop
$\gamma$
in
$X\setminus D$
such that the monodromy of
$\Sigma _{E,\theta }$
along
$\gamma$
exchanges
$E_i$
and
$E_j$
. By taking a finite covering of
$\gamma$
by relatively compact open subsets and by applying the above consideration, we obtain that there exist
$C_8(P),\epsilon _8(P)\gt 0$
such that the following holds for any
$P_1\in X_P$
:

By (58), there exist
$C_9(P),\epsilon _9(P)\gt 0$
such that the following holds on
$X_P$
:

By (59) and (60), there exist
$C_{10}(P),\epsilon _{10}(P)\gt 0$
such that

Then, we obtain the claim of Lemma 7.18.
We obtain the estimate of
$|s_t-{\mathop{\textrm{id}}\nolimits }|_{\widetilde{h}_t}$
around
$D$
by using Theorem4.3. We can also obtain the estimate for the higher derivatives by using Theorem4.3.
7.3 A family case
7.3.1 Setting
Let
$\mathcal{S}$
be a connected complex manifold. Let
$\mathcal{Y}$
be a complex manifold with a proper smooth morphism
$p_1:\mathcal{Y}\to \mathcal{S}$
. Let
$p_2:\mathcal{S}\times X\to \mathcal{S}$
and
$\pi _2:\mathcal{S}\times T^{\ast }X\to \mathcal{S}\times X$
denote the projections. Let
$\Phi _0:\mathcal{Y}\to \mathcal{S}\times T^{\ast }X$
be a holomorphic map such that
$p_1=p_2\circ \pi _2\circ \Phi _0$
. We set
$\Phi _1=\pi _2\circ \Phi _0$
. We assume the following conditions:
-
– each fiber of
$p_1$ is connected and one
$1$ -dimensional;
-
–
$\Phi _1$ is proper and finite;
-
– there exists a closed complex analytic hypersurface
$\mathcal{D}\subset \mathcal{S}\times X$ such that (i)
$\mathcal{D}$ is finite over
$\mathcal{S}$ , (ii) the induced map
$\mathcal{Y}\setminus \Phi _1^{-1}(\mathcal{D}) \to (\mathcal{S}\times X)\setminus \mathcal{D}$ is a covering map and (iii)
$\Phi _0$ induces an injection
$\mathcal{Y}\setminus \Phi _1^{-1}(\mathcal{D}) \longrightarrow \mathcal{S}\times T^{\ast }X$ .
We set
$r:=|\Phi _1^{-1}(P)|$
for any
$P\in (\mathcal{S}\times X)\setminus \mathcal{D}$
. We set
$\widetilde{\mathcal{D}}:=\Phi _1^{-1}(\mathcal{D})$
. For any
$x\in \mathcal{S}$
, we set
$\mathcal{Y}_x:=p_1^{-1}(x)$
,
$\widetilde{\mathcal{D}}_x:=\mathcal{Y}_x\cap \widetilde{\mathcal{D}}$
and
$\mathcal{D}_x:=p_2^{-1}(x)\cap \mathcal{D}$
. Let
$g(X)$
denote the genus of
$X$
. Let
$\widetilde{g}$
denote the genus of
$\mathcal{Y}_x$
, which is independent of
$x\in \mathcal{S}$
.
Let
$\mathcal{L}$
be a line bundle on
$\mathcal{Y}$
such that

We obtain the locally free
$\mathcal{O}_{\mathcal{S}\times X}$
-module
$\mathcal{E}=\Phi _{1\ast }\mathcal{L}$
. It is equipped with the relative Higgs field

induced by the
$\mathcal{O}_{\mathcal{S}\times T^{\ast }X}$
-action on
$\Phi _{0\ast }\mathcal{L}$
. For any
$x\in \mathcal{S}$
, let
$(\mathcal{E}_x,\theta _x)$
be the induced Higgs bundle on
$X\simeq \{x\}\times X$
. We obtain the following lemma by the construction.
Lemma 7.19.
Each
$(\mathcal{E}_x,\theta _x)$
is stable of degree
$0$
.
7.3.2 Statement
We obtain the holomorphic line bundle
$\det (\mathcal{E})$
on
$\mathcal{S}\times X$
. There exists a
$C^{\infty }$
-Hermitian metric
$h_{\det (\mathcal{E})}$
of
$\det (\mathcal{E})$
such that
$h_{\det (\mathcal{E}),x}:=h_{\det (\mathcal{E})|\{x\}\times X}$
is flat for any
$x\in \mathcal{S}$
.
We have the decomposable filtered Higgs bundle
$(\mathcal{P}^{\star }_{\ast }\mathcal{E}_x,\theta _x)$
on
$(X,\mathcal{D}_{x})$
. Let
$h_{\infty, x}$
be the decoupled harmonic metric of
$(\mathcal{E}_x,\theta _x)_{|X\setminus \mathcal{D}_{x}}$
such that
$\det (h_{\infty, x})=h_{\det (\mathcal{E}),x}$
.
Lemma 7.20. The metrics
$h_{\infty, x}$
$(x\in \mathcal{S})$
induce a
$C^{\infty }$
-metric of
$\mathcal{E}_{|(\mathcal{S}\times X)\setminus \mathcal{D}}$
.
Proof.
It is enough to study locally around any point
$x_0\in \mathcal{S}$
. By using the examples in §6.3.3, we can construct a
$C^{\infty }$
-Hermitian metric
$h_0$
of
$\mathcal{L}_{|\mathcal{Y}\setminus \widetilde{\mathcal{D}}}$
such that (i)
$h_0$
is flat around
$\widetilde{\mathcal{D}}$
and (ii)
$h_{0|\mathcal{Y}_x\setminus \widetilde{\mathcal{D}}_{x}}$
is adapted to
$\mathcal{P}^{\star }_{\ast }(\mathcal{L}_{|\mathcal{Y}_x})$
. By using Lemma 7.23 below, we can construct a
$C^{\infty }$
-function
$f$
on
$\mathcal{Y}$
such that
$h_{1,x}=e^{f}h_{0,x}$
$(x\in \mathcal{S})$
is a family of flat metrics
$\mathcal{L}_{|\mathcal{Y}_x\setminus \widetilde{\mathcal{D}}_{x}}$
. It induces a family of decoupled harmonic metrics
$h_{2,x}$
of
$(\mathcal{E}_x,\theta _x)_{|X\setminus \mathcal{D}_{x}}$
such that they give a
$C^{\infty }$
-Hermitian metric
$h_2$
of
$\mathcal{E}_{|(\mathcal{S}\times X)\setminus \mathcal{D}}$
. Note that
$\det (h_{2,x})$
induces a flat metric of
$\det (\mathcal{E}_x,\theta _x)$
. For each
$x\in \mathcal{S}$
, because both
$\det (h_{2,x})$
and
$h_{\det (\mathcal{E}),x}$
are flat metrics of
$\det (\mathcal{E}_x)$
, we obtain that
$\alpha _x\gt 0$
determined by
$\det (h_{2,x})=\alpha _xh_{\det (\mathcal{E}),x}$
. Because
$\det (h_{2,x})$
$(x\in \mathcal{S})$
give a
$C^{\infty }$
-metric of
$\det (\mathcal{E})_{|(\mathcal{S}\times X)\setminus \mathcal{D}}$
, we obtain that
$\alpha _x$
$(x\in \mathcal{S})$
give a
$C^{\infty }$
-function on
$\mathcal{S}$
. Because
$h_{\infty, x}=e^{-\alpha _x/r}h_{2,x}$
, we obtain that
$h_{\infty, x}$
induces a
$C^{\infty }$
-metric of
$\mathcal{E}_{(\mathcal{S}\times X)\setminus \mathcal{D}}$
.
Let
$h_{t,x}$
be a harmonic metric of
$(\mathcal{E}_x,t\theta _x)$
such that
$\det (h_{t,x})=h_{\det (\mathcal{E}),x}$
. Let
$(V_x,\theta _x):=(\mathcal{E}_x,\theta _x)_{|X\setminus \mathcal{D}_{x}}$
. We obtain the automorphism
$s(h_{\infty, x},h_{t,x})$
of
$V_x$
determined by
$h_{t,x}=h_{\infty, x}\cdot s(h_{\infty, x},h_{t,x})$
.
Theorem 7.21.
Let
$x_0\in \mathcal{S}$
. Let
$K$
be any relatively compact open subset in
$X\setminus \mathcal{D}_{x_0}$
. Let
$\mathcal{S}_0$
be a neighbourhood of
$x_0$
such that
$\mathcal{S}_0\times K$
is relatively compact in
$(\mathcal{S}\times X)\setminus \mathcal{D}$
. For any
$\ell \in \mathbb{Z}_{\geqslant 0}$
, there exist positive constants
$C(\ell, K)$
and
$\epsilon (\ell, K)$
such that the
$L_{\ell }^2$
-norms of
$s(h_{\infty, x},h_{t,x})-{\mathop{\textrm{id}}\nolimits }$
$(x\in \mathcal{S}_0,t\geqslant 1)$
on
$K$
with respect to
$h_{\infty, x}$
,
$g_X$
and the Chern connection of
$h_{\infty, x}$
are dominated by
$C(\ell, K)\exp (-\epsilon (\ell, K)t)$
.
7.3.3 Refined statement
Let
$x_0\in \mathcal{S}$
. For any
$P\in \mathcal{D}_{x_0}$
, let
$(U_P,z_P)$
be a simply connected holomorphic coordinate neighbourhood of
$P$
in
$X$
such that
$U_P\cap \mathcal{D}_{x_0}=\{P\}$
and that
$z_P$
induces
$(U_P,P)\simeq (B(2),0)$
. Moreover, we assume that
$z_P$
induces a holomorphic isomorphism between neighbourhoods of the closures of
$U_P$
and
$B(2)$
. Let
$\mathcal{S}_{1,P}$
be a relatively compact open neighbourhood of
$x_0$
in
$\mathcal{S}$
such that

Let
$\mathcal{S}_1$
be a connected open neighbourhood of
$x_0$
in
$\bigcap _{P\in \mathcal{D}_{x_0}}\mathcal{S}_{1,P}$
.
For
$P\in \mathcal{D}_{x_0}$
and
$x\in \mathcal{S}_1$
, let
$h_{t,P,x}$
be the harmonic metric of
$(\mathcal{E}_x,\theta _x)_{|\{|z_P|\lt 1\}}$
such that
$h_{t,P,x|\{|z_P|=1\}} =h_{\infty, x|\{|z_P|=1\}}$
. We note that Condition 6.17 is satisfied for
$h_{\infty, x|U_P}$
by Lemma 7.15, and we can apply Proposition 6.18 to
$h_{t,P,x}$
. We construct Hermitian metrics
$\widetilde{h}_{t,x}$
of
$\mathcal{E}_{x}$
$(x\in \mathcal{S}_1)$
from
$h_{\infty, x}$
and
$h_{t,P,x}$
$(P\in \mathcal{D}_{x_0})$
as in §7.1.3. Let
$s(\widetilde{h}_{t,x},h_{t,x})$
be the automorphism of
$\mathcal{E}_x$
determined by
$h_{t,x}=\widetilde{h}_{t,x}\cdot s(\widetilde{h}_{t,x},h_{t,x})$
. By using Proposition 6.18, we obtain the following theorem in the same way as Theorem7.14, which implies Theorem7.21.
Theorem 7.22.
For any
$\ell \in \mathbb{Z}_{\geqslant 0}$
, there exist positive constants
$C(\ell )$
and
$\epsilon (\ell )$
such that the
$L^{2}_{\ell }$
-norms of

with respect to
$\widetilde{h}_{t,x}$
,
$g_X$
and
$\widetilde{h}_{t,x}$
are dominated by
$C(\ell )\exp (-\epsilon (\ell )t)$
.
7.3.4 Appendix
Let
$M$
be a compact oriented
$C^{\infty }$
-manifold. Let
$S$
be a
$C^{\infty }$
-manifold. Let
$g_{S\times M}$
be a Riemannian metric of
$S\times M$
. For each
$x\in S$
, we set
$M_x:=\{x\}\times M$
. Let
$g_x$
and
$\Delta _x$
denote the induced Riemannian metric and the associated Laplacian of
$M_x$
.
Lemma 7.23.
Let
$f_1$
be a
$C^{\infty }$
-function on
$S\times M$
such that
$\int _{M_x} f_{1}\mathop{\textrm{dvol}}\nolimits _{g_x}=0$
. Let
$f_2$
be a function on
$S\times M$
determined by the conditions
$\Delta _x(f_{2|M_x})=f_{1|M_x}$
and
$\int _{M_x}f_{2|M_x}\mathop{\textrm{dvol}}\nolimits _{g_x}=0$
. Then,
$f_2$
is
$C^{\infty }$
.
Proof.
We explain only a sketch of a proof. For any
$x\in S$
, let
$f_{i,x}:=f_{i|M_x}$
. Let
$S_0$
be a relatively compact open subset in
$S$
. There exists a uniform lower bound of the first non-zero eigenvalue of the operators
$\Delta _{x}$
$(x\in S_0)$
(see [Reference LiLi12, Theorem 5.7]). There exists
$C_0\gt 0$
such that
$\|f_{1,x}\|_{L^2}\leqslant C_0$
$(x\in S_0)$
. By
$\Delta _x(f_{1,x})=f_{2,x}$
, for any
$\ell \in \mathbb{Z}_{\geqslant 0}$
there exists
$C_1(\ell )\gt 0$
such that
$\|f_{1,x}\|_{L^2_{\ell }}\leqslant C_1(\ell )$
for any
$x\in S_0$
. Let
$x(i)\in S_0$
be a sequence convergent to
$x(\infty )\in S_0$
. There exists a subsequence
$x'(j)$
convergent to
$x(\infty )$
such that the sequence
$f_{1,x^{\prime}(j)}$
is weakly convergent in
$L_{\ell }^2$
for any
$\ell \in \mathbb{Z}_{\geqslant 0}$
. The limit
$f_{\infty }$
satisfies
$\Delta (f_{\infty })=f_{2,x(\infty )}$
and
$\int _{M_{x(\infty )}}f_{\infty }\mathop{\textrm{dvol}}\nolimits _{g_{x(\infty )}}=0$
. We obtain
$f_{\infty }=f_{1,x(\infty )}$
. Hence,
$f_{1,x}$
and their derivatives in the
$M$
-direction are continuous with respect to
$x\in S$
.
Let
$S_1$
be a relatively compact open subset of
$S$
equipped with a real coordinate system
$(x_1,\ldots, x_n)$
. Let
$[{\partial }_{j},\Delta _x]$
be the differential operator on
$S_1\times M$
defined by
$[{\partial }_{j},\Delta _x](f)={\partial }_{j}(\Delta _x(f))-\Delta _x({\partial }_{j}f)$
. It does not contain a derivative in the
$S_1$
-direction. Note that
$[{\partial }_{j},\Delta _x](f_{1,x})$
and their derivative in the
$M$
-direction are continuous with respect to
$x\in S_1$
. Let
$f_{1,x}^{(j)}$
be the solution of the conditions
$\Delta _{x}(f^{(j)}_{1,x}) ={\partial }_{j}f_{2,x}-[{\partial }_{j},\Delta _x]f_{1,x}$
and
$\int _{M_{x}}f^{(j)}_{1,x}\;\mathop{\textrm{dvol}}\nolimits _{g_{x}}=0$
. Choose
$y=(y_1,\ldots, y_n)\in S_1$
. We define functions
$F^{(j)}_x$
on
$M_x$
by
$F^{(j)}_{x}=(x_j-y_j)^{-1}(f_{1,x}-f_{1,y})$
if
$x_j\neq y_j$
, and
$F^{(j)}_x=f^{(j)}_{1,x}$
if
$x_j=y_j$
. They satisfy
$\Delta _x(F_x^{(j)}) =(x_j-y_j)^{-1}(f_{2,x}-f_{2,y}-(\Delta _x-\Delta _y)f_{1,y})$
if
$x_j\neq y_j$
and
$\Delta _x(F_x^{(j)})={\partial }_jf_{2,x}-[{\partial }_j,\Delta _x]f_{1,x}$
if
$x_j=y_j$
. Then, by an argument in the previous paragraph, we can prove that
$F^{(j)}_x$
and their derivatives in the
$M$
-direction are continuous with respect to
$x$
. This implies that
$f_{1,x}$
is
$C^1$
-with respect to
$x$
and that
${\partial }_jf_{1,x}=f^{(j)}_{1,x}$
. By a similar argument, we can prove that
$f_{1,x}$
and their derivatives in the
$M$
-direction are
$C^{\infty }$
with respect to
$x$
.
Acknowledgements
Both authors are grateful to Laura Fredrickson for the answer to our question related to Remark 1.2. They thank the reviewer for his/her careful reading and helpful suggestions to improve this manuscript. T.M. thanks Qiongling Li for discussions and collaborations. In particular, the ideas in §3 are variants of those in [Reference Li and MochizukiLM10a, Reference Li and MochizukiLM10b]. T.M. is grateful to Rafe Mazzeo and Siqi He for some discussion. Sz.Sz. would like to thank Olivia Dumitrescu and Richard Wentworth for inspiring discussions.
Conflicts of Interest
None.
Financial Support
T. M. is partially supported by the Grant-in-Aid for Scientific Research (A) (No. 21H04429), the Grant-in-Aid for Scientific Research (A) (No. 22H00094), the Grant-in-Aid for Scientific Research (A) (No. 23H00083) and the Grant-in-Aid for Scientific Research (C) (No. 20K03609), from the Japan Society for the Promotion of Science. This work was partially supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. Sz.Sz. was supported by a Lendület Low Dimensional Topology grant from the Hungarian Academy of Sciences and by the grants K120697 and KKP126683 from NKFIH. Sz.Sz. partially enjoyed the hospitality of the Max Planck Institute for Mathematics (Bonn).
Journal Information
Moduli is published as a joint venture of the Foundation Compositio Mathematica and the London Mathematical Society. As not-for-profit organisations, the Foundation and Society reinvest
$100\%$
of any surplus generated from their publications back into mathematics through their charitable activities.