Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-27T18:55:36.943Z Has data issue: false hasContentIssue false

Nomenclature of the ancylite supergroup

Published online by Cambridge University Press:  19 February 2024

Yanjuan Wang*
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China Department of Geosciences, University of Padova, Padova 35131, Italy
Fabrizio Nestola
Affiliation:
Department of Geosciences, University of Padova, Padova 35131, Italy
Zengqian Hou
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Ritsuro Miyawaki
Affiliation:
Department of Geology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia
Xiangping Gu
Affiliation:
School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
Guochen Dong
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Kai Qu
Affiliation:
Tianjin Center, China Geological Survey, Tianjin 300170, China School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
*
Corresponding author: Yanjuan Wang; Email: [email protected]

Abstract

The ancylite supergroup has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, with the general crystal chemical formula (M3+xM2+2–x)(CO3)2[(OH)x⋅(2–x)H2O] (1 ≤ x ≤ 2, Z = 2). The ancylite supergroup can be divided into two groups defined by different proportions of the M cation and hydroxyl anion and/or water molecule: the ancylite group is defined for 1 ≤ x ≤ 1.5; the kozoite group is defined for 1.5 < x ≤ 2. The ancylite supergroup minerals are orthorhombic with space group Pmcn, or monoclinic with space group Pm11, and have a crystal structure with species-defining trivalent and divalent M cations (M = La3+, Ce3+, Nd3+, Ca2+, Sr2+ and Pb2+) which centre ten-vertex polyhedra formed by oxygen atoms at three independent O sites. Two vertices of the triangular (CO3)2– anion are oxygen atoms, whereas the third one, O(3), is statistically filled with (OH) groups and H2O molecules. The triangular faces of three oxygen atoms of MO10 coordination polyhedra join the chains of this ten-vertex polyhedron, which is extended along the c axis. The (CO3) triangles connect chains in three dimensions. To date, eight valid mineral species with M2+ = Sr2+, Ca2+ and Pb2+ belong to the ancylite group [ancylite-(La), ancylite-(Ce), calcioancylite-(La), calcioancylite-(Ce), calcioancylite-(Nd), gysinite-(La), gysinite-(Ce) and gysinite-(Nd)]. Two hydroxyl carbonates with only rare earth elements as species-defining cations, kozoite-(La) and kozoite-(Nd) are members of the kozoite group.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This paper is part of a thematic set on pegmatites in memory of Alessandro Guastoni

Guest Editor: Simone Molinari

References

Artini, E. (1915) Due minerali di Baveno contenenti terra rare – weibyeite e bazzite. Rendiconti dell'Accademia Nazionale dei Lincei, 24, 313319.Google Scholar
Back, M.E and Mandarino, J.A. (2008) Fleischer's Glossary of Mineral Species 2008. The Mineralogical Record Inc., Tucson, USA, pp.275.Google Scholar
Belovitskaya, Y.V., Pekov, I.V., Gobetchia, E.R., Yamnova, N.A., Kabalov, Yu.K., Chukanov, N.V. and Schneider, J. (2002) Crystal structures of two ancylite modifications. Crystallography Reports, 47, 223228.CrossRefGoogle Scholar
Belovitskaya, Y.V., Pekov, I.V., Gobechiya, E.R. and Kabalov, Y.K. (2013) Refinement of the crystal structure of calcioancylite-(Ce) by the Rietveld method. Crystallography Reports, 58, 216219.CrossRefGoogle Scholar
Bosi, F., Hatert, F., Pasero, M. and Mills, S.J. (2024) Establishment of the ancylite supergroup, CNMNC Newsletter 78. Mineralogical Magazine, 88, 345349. https://doi.org/10.1180/mgm.2024.23CrossRefGoogle Scholar
Brögger, W.C. (1890) Die Mineralien der Syentipegmatitgänge der südnorwegischen Augit-und Nephelinsyenite. 71. Weibyeit und 72. Parisit. Zeitschrift für Kristallographie, 16, 650654.Google Scholar
Bulakh, A.G., Zaitsev, A.N., Le Bas, M.J. and Wall, F. (1998) Ancylite-bearing carbonatites of the Seblyavr massif, Kola Peninsula, Russia. Neues Jahrbuch für Mineralogie, Monatshefte, 4, 171192.Google Scholar
Chabot, B. and Sarp, H. (1985) Structure refinement of Gysinite La0.16Nd1.18Pb0.66(CO3)2(OH)1.34⋅0.66H2O. Zeitschrift fur Kristallographie, 171, 155158.Google Scholar
Chernik, G.P. (1904) A nature and chemical composition of one a new cerian ancylite-like mineral. Zapiski Imperatorskogo Mineralogicheskogo Obshchestva, 71, 4354 [in Russian].Google Scholar
Chernik, G.P. (1923) Chemical examination of calcian ancylite and associated minerals from Khibina tundra. Izvestiya Rossiyskoy Akademii Nauk, Ser.VI, 17, 8194 [in Russian].Google Scholar
Dal Negro, A., Rossi, G. and Tazzoli, V. (1975) The crystal structure of ancylite, (RE)x(Ca,Sr)2–x(CO3)2(OH)x⋅(2–x)H2O. American Mineralogist, 60, 280284.Google Scholar
Effenberger, H. (1981) Kristallstruktur und Infrarot-Absorptionsspektrum von synthetischem Monohydrocalcit, CaCO3⋅H2O. Monatshefte für Chemie, 112, 899909.CrossRefGoogle Scholar
Flink, G. (1898) Berättelse om en Mineralogisk Resa i Syd-Grönland sommaren 1897. 4. Gult anataslikt, Meddelelser om Grønland, 14, 235235.CrossRefGoogle Scholar
Flink, G. (1901) On the minerals from Narsarsuk on the Firth of Tunugdliarfik in Southern Greenland. 11 Ancylite, Meddelelser om Grønland, 24, 4956.Google Scholar
Hatert, F. and Burke, E.A. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Hatert, F., Mills, S.J., Pasero, M. and Williams, P.A. (2013) CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names. European Journal of Mineralogy, 25, 113115.CrossRefGoogle Scholar
Kampf, A.R., Möhn, G., Ma, C., Désor, J. and Groß, M. (2023) Gysinite-(Ce), IMA 2023-035, CNMNC Newsletter 74. Mineralogical Magazine, 87, 783787. https://doi.org/10.1180/mgm.2023.54Google Scholar
Levinson, A.A. (1966) A system of nomenclature for rare-earth minerals. American Mineralogist, 51, 152158.Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K. and Takeuchi, K. (1998) An ancylite group mineral in alkali olivine basalt from Saga Prefecture, Japan. Memoirs of the National Science Museum, 31, 4956.Google Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K., Takeuchi, K., Nakai, I. and Terada, Y. (2000) Kozoite-(Nd), Nd(CO3)(OH), a new mineral in an alkali olivine basalt from Hizen-cho, Saga Prefecture, Japan. American Mineralogist, 85, 10761081.CrossRefGoogle Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K., Iwano, S., Hamasaki, K. and Yukinori, I. (2003) Kozoite-(La), La(CO3)(OH), a new mineral from Mitsukoshi, Hizen-cho, Saga Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 98, 137141.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. Mineralogy and Petrology, 64, 237263.CrossRefGoogle Scholar
Nickel, E.H. and Mandarino, J.A. (1987) Procedures involving the IMA commission on New Minerals and Mineral Names, and guidelines on mineral nomenclature. The Canadian Mineralogist, 25, 353377.CrossRefGoogle Scholar
Orlandi, P., Pasero, M. and Vezzalini, G. (1990) Calcio-ancylite-(Nd), a new REE-carbonate from Baveno, Italy. European Journal of Mineralogy, 2, 413418.CrossRefGoogle Scholar
Pasero, M. (2024) The New IMA List of Minerals – A Work in Progress – Updated: January 2024. The Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA). http://cnmnc.units.it/.Google Scholar
Pekov, I.V., Petersen, O.V. and Voloshin, A.V. (1997) Calcio-ancylite-(Ce) from Ilímaussaq and Narssarssuk, Greenland, Kola peninsula and Polar Urals, Russia; ancylite-(Ce) – calcio-ancylite-(Ce) an isomorphous series. Neues Jahrbuch für Mineralogie, Abhandlungen, 171, 309322.CrossRefGoogle Scholar
Petersen, O.V., Niedermayr, G., Gault, R.A., Brandsttter, F. and Giester, G. (2001) Ancylite-(La) from the Ilímaussaq alkaline complex, South Greenland: Contribution to the mineralogy of Ilímaussaq, no. 106. Neues Jahrbuch für Mineralogie - Monatshefte, 11, 493504.Google Scholar
Saebø, P.C. (1963) Contributions to the mineralogy of Norway. No. 20. The identity of weibyeite. Norsk Geologisk Tidsskrift, 43, 441443.Google Scholar
Sarp, H. and Bertrand, J. (1985) Gysinite, Pb(Nd,La)(CO3)2(OH)⋅H2O, a new lead, rare-earth carbonate from Shinkolobwe, Shaba, Zaïre and its relationship to ancylite. American Mineralogist, 70, 13141317.Google Scholar
Semenov, E.I. (1964) Hydrated carbonates of sodium and calcium. Kristallografiya, 9, 109110 [in Russian].Google Scholar
Swainson, I.P. (2008) The structure of monohydrocalcite and the phase composition of the beachrock deposits of Lake Butler and Lake Fellmongery, South Australia. American Mineralogist, 93, 10141018.CrossRefGoogle Scholar
Wang, Y., Gu, X., Dong, G., Hou, Z., Nestola, F., Yang, Z., Fan, G., Wang, Y. and Qu, K. (2023) Calcioancylite-(La), (La,Ca)2(CO3)2(OH,H2O)2, a new member of the ancylite group from Gejiu nepheline syenite, Yunnan Province, China. Mineralogical Magazine, 87, 554560.CrossRefGoogle Scholar
Wu, B., Gu, X., Rao, C., Wang, R., Xing, X., Wan, J. and Zhong, F. (2023) Gysinite-(La), PbLa(CO3)2(OH)⋅H2O, a new rare earth mineral of the ancylite group from the Saima alkaline complex, Liaoning Province, China. Mineralogical Magazine, 87, 143150.CrossRefGoogle Scholar
Yakovenchuk, V.N., Menshikov, Y.P., Pakhomovsky, Y.A. and Ivanyuk, G.Y. (1997) Ancylite-(La) Sr(La,Ce)(CO3)2(OH)⋅H2O – a new carbonate from hydrothermal vein at the Kukisvumchorr mountain (Khibiny massif) and its comparison with ancylite-(Ce). Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 126, 96108 [in Russian].Google Scholar