Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-27T02:45:52.123Z Has data issue: false hasContentIssue false

Hydroxylbastnäsite-(La), an ‘old new’ bastnäsite-group mineral

Published online by Cambridge University Press:  12 November 2024

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Nikita V. Chukanov
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Sergey N. Britvin
Affiliation:
St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Anatoly S. Kirillov
Affiliation:
St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Anatoly N. Zaitsev
Affiliation:
St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Aleksey M. Kuznetsov
Affiliation:
Independent researcher, 454071 Chelyabinsk, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
Corresponding author: Igor V. Pekov; Email: [email protected]

Abstract

Hydroxylbastnäsite-(La), the OH- and La-dominant member of the bastnäsite group, in fact known for many years, was studied in detail and has been approved by the IMA–CNMNC as a new mineral species with the ideal, end-member formula La(CO3)(OH). The holotype originates from the Vuoriyarvi (another spelling: Vuorijärvi) alkaline-ultrabasic complex, Northern Karelia, and the cotype from the Mochalin Log REE deposit, Potaniny Mts, South Urals, both in Russia. At Vuoriyarvi, hydroxylbastnäsite-(La) occurs as clusters (up to 1 mm) of light brown, honey-yellow or colourless hexagonal tabular to short-prismatic crystals up to 0.15 mm associated with fluorite and ancylite-(Ce) in cavities of calcite–dolomite carbonatites. At Mochalin Log, hydroxylbastnäsite-(La) forms light brown grains up to 0.2 mm included in massive aggregates of other LREE minerals: bastnäsite-(Ce), bastnäsite-(La), percleveite-(Ce), percleveite-(La), biraite-(Ce), biraite-(La), törnebohmite-(La), ferriperbøeite-(Ce), allanite-(Ce), etc. Dmeas is 4.75(2) and Dcalc is 4.778 g cm–3 (holotype). Hydroxylbastnäsite-(La) is optically uniaxial (+), ω = 1.76(1) and ε = 1.86(1) (holotype). The chemical composition (wt.%, electron microprobe, CO2 and H2O calculated: holotype/cotype) is: CaO 0.23/0.00, SrO 0.07/0.00, La2O3 39.47/39.58, Ce2O3 33.51/31.99, Pr2O3 1.03/1.51, Nd2O3 1.95/2.38, F 0.76/3.33, CO2 20.49/20.34, H2O 3.77/2.58, –O=F 0.32/1.40, total 100.96/100.31. The empirical formulae, calculated based on the sum of metal cations of 1 apfu and one CO3 group pfu, are (La0.52Ce0.44Nd0.02Pr0.01Ca0.01)Σ1.00(CO3)[(OH)0.90F0.09]Σ0.99 (holotype) and (La0.53Ce0.42Nd0.03Pr0.02)Σ1.00(CO3)[(OH)0.62F0.38]Σ1.00 (cotype). Hydroxylbastnäsite-(La) is hexagonal, P6̅, unit-cell parameters (from powder XRD data, holotype/cotype) are: a = 12.537(3)/12.533(1), c = 9.968(2)/9.908(1) Å, V = 1356.8(5)/1347.9(3) Å3 and Z = 18. Strong reflections of the powder XRD pattern [d,Å(I)(hkl)] are (holotype): 4.98(39)(002), 3.616(88)(300), 2.926(100)(302), 2.089(41)(330), 2.052(46)(304) and 1.927(40)(332). The crystal structure of holotype hydroxylbastnäsite-(La) was refined by the Rietveld method, Rwp = 0.0071, Rp = 0.0050, Robs = 0.0466. It is isostructural to hydroxylbastnäsite-(Ce) and synthetic bastnäsite-type hydroxyl-carbonates REE3+(CO3)(OH) (REE = La–Er), but differs from fluorine-dominant bastnäsites which adopt the space group P6̅2c.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Daniel Atencio

This paper is part of a thematic set on pegmatites in memory of Alessandro Guastoni

References

Aleksandrov, I.V., Ivanov, V.I. and Sin’kova, L.A. (1965) New data on bastnäsite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 94, 323326 [in Russian].Google Scholar
Alimarin, I.P. (1930) On the chemical analysis of bastnäsite – in: “Rare-Earth Minerals of Kyshtym Area”. Trudy Instituta Prikladnoy Mineralogii (Proceedings of the Institute of Applied Mineralogy), 44, 4757 [in Russian].Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy. V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, 813 pp.Google Scholar
Berzelius, J.J. (1825) Flusspatssyradt och kolsyradt cerium. Årsberättelser om Vetenskapernas Framsteg. Afgivne af Kongl. Vetenskaps-Academiens Embetsman: 31 Mars 1824, 201202.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Brush, G.J. (1863) Kischtimite, a new mineral. American Journal of Science, 35, 427428.Google Scholar
Cámara, F. and Ottolini, L. (2000) New data on the crystal-chemistry of fluoborite, by means of SREF, SIMS and EMP analysis. American Mineralogist, 85, 103107.CrossRefGoogle Scholar
Christensen, A.N. (1973) Hydrothermal preparation of rare earth hydroxycarbonates. The crystal structure of NdOHCO3. Acta Chemica Scandinavica, 27, 29732982.CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Cham, Switzerland, 1109 pp.CrossRefGoogle Scholar
Chukanov, N.V. and Vigasina, M.F. (2020) Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. Springer, Dordrecht, 1376 pp.CrossRefGoogle Scholar
Donnay, G. and Donnay, J.D.H. (1953) The crystallography of bastnaesite, parisite, roentgenite and synchysite. American Mineralogist, 38, 932963.Google Scholar
Hawthorne, F.C., Fleischer, M., Grew, E.S., Grice, J.D., Jambor, J.L., Puziewicz, J., Roberts, A.C., Vanko, D.A. and Zilczer, J.A. (1986) New mineral names. American Mineralogist, 71, 12771282.Google Scholar
Hsu, L.C. (1992) Synthesis and stability of bastnaesites in a part of the system (Ce, La)-F-H-C-O. Mineralogy and Petrology, 47, 81101.CrossRefGoogle Scholar
Jambor, J.L. and Roberts, A.C. (2002) New mineral names. American Mineralogist, 87, 765768.Google Scholar
Karchevsky, P.I. and Moutte, J. (2004) The phoscorite-carbonatite complex of Vuoriyarvi, northern Karelia. Pp. 163199 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors). Mineralogical Society Series, 10. Mineralogical Society, London.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Polekhovsky, Yu.S., Agakhanov, A.A., Belakovskiy, D.I., Kuznetsov, A.M., Britvin, S.N. and Pushcharovsky, D.Yu. (2020) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part I. New gatelite-group minerals ferriperbøeite-(La), (CaLa3)(Fe3+Al2Fe2+)[Si2O7][SiO4]3O(OH)2, and perbøeite-(La), (CaLa3)(Al3Fe2+)[Si2O7][SiO4]3O(OH)2. Mineralogical Magazine, 84, 593607.CrossRefGoogle Scholar
Kirillov, A.S. (1964) Hydroxyl bastnäsite, a new variety of bastnäsite. Doklady Akademii Nauk SSSR, Earth Science Sections, 159, 9395.Google Scholar
Kirillov, A.S. (1966) Hydroxyl-bastnäsite, a new mineral variety. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 95, 5159 [in Russian].Google Scholar
Korovaeff, Th. (1862) Der Kischtim-Parisit, ein neues Mineral. Bulletin de l’Académie Impériale des Sciences de Saint-Pétersbourg, IV, 401408.Google Scholar
Korovaev, F. (1861) Kyshtymoparisite, a new mineral. Gornyi Zhurnal (Mining Journal), 4, 445454 [in Russian].Google Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Ilinskiy, G.A., Sergeev, A.S. and Abakumova, N.B. (1965) The Caledonian Complex of Ultramafic, Alkaline Rocks and Carbonatites of Kola Peninsula and Northern Karelia. Nedra Publishing, Leningrad, 772 pp. [in Russian].Google Scholar
Kupriyanova, I.I. (1968) Bastnäsite from albitites. Novye Dannye o Mineralakh SSSR (Proceedings of Fersman Mineralogical Museum), 18, 206209 [in Russian].Google Scholar
Kutlu, I. and Meyer, G. (1999) Basische Carbonate des Dysprosiums: Dy2O2(CO3) und Dy(OH)(CO3). Zeitschrift für Anorganische und Allgemeine Chemie, 625, 402406.3.0.CO;2-S>CrossRefGoogle Scholar
Lacroix, A. (1912) Sur l’existence de la bastnaesite dans les pegmatites de Madagascar. Les proprietes de ce mineral. Bulletin de la Société Francaise de Minéralogie, 35, 108113.CrossRefGoogle Scholar
Levinson, A.A. (1966) A system of nomenclature for rare-earth minerals. American Mineralogist, 51, 152158.Google Scholar
Maksimović, Z. and Pantó, G. (1983) Mineralogy of yttrium and lanthanide elements in karstic bauxite deposits. Travaux du Comité International pour l’Etude des Bauxites, de l’Alumine et de l’Aluminium, 13, 191200.Google Scholar
Maksimović, Z. and Pantó, G. (1985) Hydroxyl-bastnaesite-(Nd), a new mineral from Montenegro, Yugoslavia. Mineralogical Magazine, 49, 717720.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 14, 498502.Google Scholar
Mi, J., Shen, J., Pan, B. and Liang, J. (1996) Crystal structure refinement of bastnäsite-(Ce) and fluocerite-(Ce). Earth Science – Journal of China University of Geosciences, 21, 6367 [in Chinese with English abstract].Google Scholar
Michiba, K., Tahara, T., Nakai, I., Miyawaki, R. and Matsubara, S. (2011) Crystal structure of hexagonal RE(CO3)OH. Zeitschrift für Kristallographie, 226, 518530.CrossRefGoogle Scholar
Michiba, K., Miyawaki, R., Minakawa, T., Terada, Y., Nakai, I. and Matsubara, S. (2013) Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 108, 326334.CrossRefGoogle Scholar
Minakawa, T., Adachi, T. and Matsuda, M. (1992) Hydroxylbastnaesite-(Ce), a new occurrence from Japan. Chigaku Kenkyu, 41, 155159.Google Scholar
Mineev, D.A., Lavrishcheva, T.I. and Bykova, A.V. (1970) Yttrium bastnaesite, a product of gagarinite alteration. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 99, 328332 [in Russian].Google Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K., Iwano, S., Hamasaki, K. and Yukinorii, I. (2003) Kozoite-(La), La(CO3)(OH), a new mineral from Mitsukoshi, Hizen-cho, Saga Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 98, 137141.CrossRefGoogle Scholar
Miyawaki, R., Yokoyama, K. and Husdal, T.A. (2013) Bastnäsite-(Nd), a new Nd-dominant member of the bastnäsite group from the Stetind pegmatite, Tysfjord, Nordland, Norway. European Journal of Mineralogy, 25, 187191.CrossRefGoogle Scholar
Nakamoto, K. (2008) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry. John Wiley and Sons, NY. 350 pp.Google Scholar
Ni, Y., Hughes, J.M., and Mariano, A.N. (1993) The atomic arrangement of bastnäsite-(Ce), Ce(CO3)F, and structural elements of synchysite-(Ce), röntgenite-(Ce), and parisite-(Ce). American Mineralogist, 78, 415418.Google Scholar
Oftedal, I. (1931) Zur Kristallstruktur von Bastnäsit (Ce,La)FCO3. Zeitschrift für Kristallographie, Mineralogie und Petrographie, 78, 462469.Google Scholar
Ondrejka, M., Uher, P., Pršek, J., Ozdín, D. and Putiš, M. (2005) Arsenian monazite-(Ce) and REE arsenates and carbonates: Composition and substitution in the REEPO4 – REEAsO4 system. Example from Tisovec – Rejkovo thyolite (Western Carpathians, Slovakia). Geophysical Research Abstracts, Vol. 7, 04857.Google Scholar
Pantó, G. and Maksimović, Z. (2001) Two new rare earth minerals in an unusual mineralization of the Nissi bauxite deposit, Greece. Acta Geologica Hungarica, 44, 8193.Google Scholar
Pekov, I.V. (1998) Minerals First Discovered on the Territory of the Former Soviet Union. OP, Moscow, 369 pp.Google Scholar
Pekov, I.V., Alimova, A.N., Kononkova, N.N. and Kanonerov, A.A. (2002) On the mineralogy of Mochalin Log at Southern Urals I. Minerals of the bastnäsite family: history of studies and new data. Uralskiy Geologicheskiy Zhurnal (Uralian Geological Journal), 4, 127144 [in Russian].Google Scholar
Pekov, I.V., Zubkova, N.V., Kasatkin, A.V., Chukanov, N.V., Koshlyakova, N.N., Ksenofontov, D.A., Škoda, R., Britvin, S.N., Kirillov, A.S., Zaitsev, A.N., Kuznetsov, A.M. and Pushcharovsky, D.Y. (2021) Hydroxylbastnäsite-(La), IMA2021–001. CNMNC Newsletter 61. Mineralogical Magazine, 85, 461.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic.Google Scholar
Rudnev, V.V., Chukanov, N.V., Nechelyustov, G.N. and Yamnova, N.A. (2007) Hydroxylborite, Mg3(BO3)(OH)3, a new mineral species and isomorphous series fluoborite-hydroxylborite. Geology of Ore Deposits, 49, 710719.CrossRefGoogle Scholar
Silberminz, V. (1929) Sur le gisement de cerite, de bastnäsite et d’un minéral nouveau la lessingite dans le district minier de Kychtym (Oural). Comptes Rendus de l’Academie des Sciences de Russie, A, 3, 5560 [in French].Google Scholar
Strunz, H. (1962) Mineralogicheskie Tablitsy (Mineralogical Tables, with additions by A.S. Povarennykh). Gosgortekhizdat, Moscow [in Russian].Google Scholar
Svyazhin, N.V. (1965) Kyshtymite as a bastnäsite variety. Trudy Instituta Geologii Uralskogo Filiala AN SSSR (Proceedings of the Institute of Geology of the Uralian Branch of Academy of Sciences of USSR), 70, 249252 [in Russian].Google Scholar
Terada, Y., Nakai, I. and Kawashima, T. (1993) Crystal structure of bastnäsite (Ce,La,Nd,Sm,Gd)CO3F. Analytical Sciences, 9, 561562.CrossRefGoogle Scholar
Wang, Y., Nestola, F., Hou, Z., Miyawaki, R., Pekov, I.V., Gu, X., Dong, G. and Qu, K. (2024) Nomenclature of the ancylite supergroup. Mineralogical Magazine, 88,https://doi.org/10.1180/mgm.2024.8Google Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
White, T., Ferraris, C., Kim, J. and Srinivasan, M. (2005) Apatite – an adaptive framework structure. Pp. 307402 in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S, editors.). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Yang, H., Dembowski, R.F., Conrad, P.G. and Downs, R.T. (2008) Crystal structure and Raman spectrum of hydroxyl-bastnäsite-(Ce), CeCO3(OH). American Mineralogist, 93, 698701.CrossRefGoogle Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material
Download Pekov et al. supplementary material(File)
File 751.1 KB