Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-25T23:37:39.666Z Has data issue: false hasContentIssue false

Foliar characteristics of neotropical forest affect assemblages structure of parasitoid insects

Published online by Cambridge University Press:  11 December 2024

Brandon Lara-Cetina
Affiliation:
División de estudios de posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Conkal, Conkal, Mexico
Horacio Ballina-Gómez
Affiliation:
División de estudios de posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Conkal, Conkal, Mexico
Santiago Bordera
Affiliation:
Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, Alicante, Spain
Jorge Leirana-Alcocer
Affiliation:
Campus de Ciencias Biológicas y agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
Alejandra González-Moreno*
Affiliation:
División de estudios de posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Conkal, Conkal, Mexico
*
Corresponding author: Alejandra González-Moreno; Email: [email protected]

Abstract

Several authors suggest that greater vegetation complexity provides more shelters, supporting higher parasitoid diversity. Additionally, it serves as visual cue in host searching. This study evaluates how visual stimuli and herbivore-induced vegetation changes affect parasitoid strategies and guilds in low deciduous forest [Yabucu], and Medium Semi-Evergreen forest [Noh-Bec]. We calculated the relative abundance of idiobiont and koinobiont life strategies for each vegetation type and constructed the range-abundance curves of these communities. Also, the relationship of guilds with the different types of damage from herbivory and leaf characteristics were described. The koinobiont:idiobiont (K:I) ratio was 6:1 (86.65% koinobionts and 13.35% idiobionts) in Yabucú and 1:2 (32.78% koinobionts and 67.22% idiobionts) in Noh-Bec. Some guilds were associated with vegetation: a negative correlation between fluctuating asymmetry seedlings (FAS) and parasitoids attacking larvae into the fruiting bodies of fungi was founded; the FAS is an indirect indicator of herbivory, nonetheless, the parasitoids found do not target phytophagous hosts, which makes an inverse relationship plausible and could potentially reduce intra-guild competition. Hyperparasitoids were positively associated with holes in adult plants (HA); with an association with herbivore parasitoids, which could be contributing to the recorded evidence of holes.

Type
Research Article
Copyright
© Tecnológico Nacional de México/ Instituto Tecnológico de Conkal, 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Askew, RR and Shaw, MR (1986) Parasitoid communities: their size, structure and development. In Waage, J and Greathead, D (eds), Insect Parasitoids. 13th Symposium of Royal Entomological Society of London. London: Academic Press, pp. 225264.Google Scholar
Borer, ET, Seabloom, EW, Tilman, D and Novotny, V (2012) Plant diversity controls arthropod biomass and temporal stability. Ecology letters 15, 14571464.CrossRefGoogle ScholarPubMed
Castelo, MK, van Nouhuys, S and Corley, JC (2010) Olfactory attraction of the larval parasitoid, Hyposoterh orticola, to plants infested with eggs of the Host Butterfly, Melitea cinxia. Journal of Insect Science 10(53), 116.CrossRefGoogle Scholar
Chan-Canché, R, Ballina-Gómez, H, Leirana-Alcocer, J, Bordera, S and González-Moreno, A (2020) Sampling of parasitoid hymenoptera: Influence of the height on the ground. Journal of Hymenoptera Research 78, 1931.CrossRefGoogle Scholar
Cournoyer, M and Boivin, G (2004) Infochemical-mediated preference behavior of the parasitoid Microctonus hyperodae when searching for its adult weevil hosts. Entomologia Experimentis et Applicata 112, 117124.CrossRefGoogle Scholar
Crawley, MJ (1983) Herbivory: the dynamics of animal plant interactions. Oxford: Blackwell Scientific.Google Scholar
Cuevas-Reyes, P, Gilberti, L, González-Rodríguez, A and Fernandes, GW (2013) Patterns of herbivory and fluctuating asymmetry in Solanum lycocarpum St. Hill (Solanaceae) along an urban gradient in Brazil. Ecological Indicators 24, 557561.CrossRefGoogle Scholar
Flores-Guido, JS and Espejel-Carvajal, I (1994) Tipos de vegetación de la Península de Yucatán (No. Y/581.61 E8/3). Mérida, Yucatán, México, Ediciones de la Universidad Autónoma de Yucatán.Google Scholar
Fraser, SE, Dytham, C and Mayhew, PJ (2007) Determinants of parasitoid abundance and diversity in woodland habitats. Journal of Applied Ecology 44(2), 352361.CrossRefGoogle Scholar
Gauld, ID (1988) Evolutionary patterns of host utilization by ichneumonid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biological Journal of the Linnean Society 35, 351377.CrossRefGoogle Scholar
Giunti, G, Canale, A, Messing, RH, Donati, E, Stefanini, C, Michaud, JP and Benelli, G (2015) Parasitoid learning: current knowledge and implications for biological control. Biological control 90, 208219.CrossRefGoogle Scholar
Godfray, HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton: Princeton University Press.CrossRefGoogle Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm Google Scholar
Hawkins, BA (1988) Species diversity in the third and fourth trophic levels: patterns and mechanisms. Journal of Animal Ecology 57, 137162.CrossRefGoogle Scholar
Hawkins, BA and Lawton, JH (1987) Species richness for parasitoids of British phytophagous insects. Nature 326, 788790.CrossRefGoogle Scholar
Hawkins, BA, Shaw, MR and Askew, RR (1992) Relations among assemblage size, host specialization, and climatic variability in North American parasitoid communities. The American Naturalist 139, 5879.CrossRefGoogle Scholar
Hughes, J, Harvey, I and Hubbard, S (1994) Host-Searching Behavior of Venturia canescens (Grav.) (Hymenoptera: Ichneumonidae): Superparasitism. Journal of Insect Behavior 7 (4), 455462.CrossRefGoogle Scholar
Janzen, DH (1981) The Peak in North American Ichneumonid Species Richness Lies Between 38º and 42º N. Ecology 62 (3), 532537.CrossRefGoogle Scholar
Koricheva, J, Mulder, CP, Schmid, B, Joshi, J and Huss-Danell, K (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125(2), 271282.CrossRefGoogle ScholarPubMed
Magurran, AE (2004) Measuring Biological Diversity. Oxford: Blackwell Publishing. 255.Google Scholar
Mazón, M and Bordera, S (2014) Diversity of ichneumonidae (Insecta: Hymenoptera) in a protected area of central Spain: what are we protecting? Insect Conservation and Diversity 7, 432452.CrossRefGoogle Scholar
Rathcke, BJ, Price, PW (1976) Anomalous diversity of tropical ichneumonid parasitoids: a predation hypothesis. American Naturalist 110, 889893.Google Scholar
Root, RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological monographs 43(1), 95124.CrossRefGoogle Scholar
Sääksjärvi, IE, Ruokolainen, K, Tuomisto, H, Haataja, S, Fine, PV, Cárdenas, G and Vargas, V (2006) Comparing composition and diversity of parasitoid wasps and plants in an Amazonian rain-forest mosaic. Journal of Tropical Ecology 22(02), 167176.CrossRefGoogle Scholar
Shaw, MR and Huddleston, T (1991) Classification and biology of braconid wasps. Handbooks for the identification of British insects 7(11), 126.Google Scholar
Sheehan, W and Hawkins, BA (1991) Attack strategy as an indicator of host range in metopiine and pimpline Ichneumonidae (Hymenoptera). Ecological Entomology 16, 129131.CrossRefGoogle Scholar
Sime, K (2004) The Natural history of the parasitic wasp Trogus pennator (Hymenoptera: Ichneumonidae): Host-finding behavior and a possible host countermeasure. Journal of Natural History 39 (17), 13671380.CrossRefGoogle Scholar
Ueno, K and Ueno, T (2015) Host Approaching Behavior in a Parasitoid Wasp (Hymenoptera: Ichneumonidae) as Influenced by Physiological State and Host Type. Entomology, Ornithology & Herpetology 4, 159.Google Scholar
Veijalainen, A, Wahlberg, N, Broad, GR, Erwin, TL, Longino, JT and Sääksjärvi, IE (2012) Unprecedented ichneumonid parasitoid wasp diversity in tropical forests. Proceedings of the Royal Society B: Biological Sciences 279 (1748), 46944698.CrossRefGoogle ScholarPubMed
Zhang, Y and Adams, J (2011) Top-down control of herbivores varies with ecosystem types. Journal of Ecology 99 (2), 370372.CrossRefGoogle Scholar