Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-26T09:02:20.873Z Has data issue: false hasContentIssue false

Seasonal changes of community structure and vertical distribution/migration for mesopelagic fish in the western subarctic Pacific

Published online by Cambridge University Press:  29 October 2024

Minoru Kitamura*
Affiliation:
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
Naofumi Murata
Affiliation:
Nago Museum, 4-20-50 Onaka, Nago, Okinawa 905-0017, Japan
*
Corresponding author: Minoru Kitamura; Email: [email protected]

Abstract

Although mesopelagic fish dominate the oceanic ecosystem, they remain one of the least investigated components. From the vertically stratified sample collections, we investigated community structure, vertical distribution and diel/ontogenetic vertical migration covering four seasons for larval and juvenile/adult mesopelagic fish at the time-series station K2 in the Western Subarctic Gyre of the North Pacific. We collected 10 and 20 species of larval and juvenile/adult fish, respectively. Among the larval fish community, Leuroglossus schmidti was the most abundant; total abundances except L. schmidti were low throughout the year; species richness of myctophids were low. Among the 20 species of juvenile/adult fish, larvae of only six species were collected; thus, most mesopelagic fish species do not use the Western Subarctic Gyre as their nursery. In the juvenile/adult fish community, Stenobrachius leucopsarus and Stenobrachius nannochir were abundant. Species diversity and total abundance in the warm seasons (summer and autumn) were higher than in the cold seasons (winter and spring). The decreasing of species diversity and total abundance during the cold seasons was probably affected by horizontal migrations of fish for reproduction toward the southern transition or subarctic slope areas. Stenobrachius leucopsarus was distributed at shallow depths with opportunistic diel vertical migration (DVM); in contrast Stenobrachius nannochir occurred at greater depths, without DVM. The distribution depths of S. leucopsarus during day and those of S. nannochir changed seasonally and synchronously; shallowest in autumn, deepest in spring.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, MJ and Smith, GB (1988) Atlas and zoogeography of common fishes in the Bering Sea and northeastern Pacific. NOAA Technical Report NMFS 86, 1151.Google Scholar
Andersen, V, Devey, C, Gubanova, A, Picheral, M, Melnikov, V, Tsarin, S and Prieur, L (2004) Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). Journal of Plankton Research 26, 275293.CrossRefGoogle Scholar
Andreeva, EN and Shebanova, MA (2010) Species composition, distribution, and specific features of feeding of fish larvae, and fry in the Sea of Okhotsk from October to December 2007. Journal of Ichthyology 50, 105115.CrossRefGoogle Scholar
Ariza, A, Garijo, JC, Landeira, JM, Bordes, F and Hernandez-Leon, S (2015) Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Progress in Oceanography 134, 330342.CrossRefGoogle Scholar
Bailey, KM, Brodeur, RD, Merati, N and Yoklavich, MM (1993) Predation on walleye pollock (Theragra chalcogramma) eggs and yolk-sac larvae by pelagic crustacean invertebrates in the western Gulf of Alaska. Fisheries Oceanography 2, 3039.CrossRefGoogle Scholar
Beamish, RJ, Leask, KD, Ivanov, OA, Balanov, AA, Orlov, AM and Sinclair, B (1999) The ecology, distribution, and abundance of midwater fishes of the subarctic Pacific gyres. Progress in Oceanography 43, 399442.CrossRefGoogle Scholar
Boyd, PW, Claustre, H, Levy, M, Siegel, DA and Weber, T (2019) Multi-faceted particle pump derive carbon sequestration in the ocean. Nature 568, 327335.CrossRefGoogle Scholar
Bray, JR and Curtis, JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecological Monograph 27, 325349.CrossRefGoogle Scholar
Brodeur, RD and Rugen, WC (1994) Diel vertical distribution of ichthyoplankton in the northern Gulf of Alaska. Fishery Bulletin 92, 223235.Google Scholar
Brodeur, RD and Yamamura, O (2005) PICES Scientific Report No. 30, Micronekton of the North Pacific, PICES Working Group 14 Final Report. PICES.Google Scholar
Butler, JL and Pearcy, WG (1972) Swimbladder morphology and specific gravity of myctophids off Oregon. Journal of Fisheries Research Board of Canada 29, 11451150.CrossRefGoogle Scholar
Clarke, KR, Somerfield, PJ and Gorley, RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366, 5669.CrossRefGoogle Scholar
Coyle, KO and Pinchuk, AI (2005) Seasonal cross-shelf distribution of major zooplankton taxa on the northern Gulf of Alaska shelf relative to water mass properties, species depth preferences and vertical migration behavior. Deep-Sea Research II 52, 217245.CrossRefGoogle Scholar
Cushing, DH (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Advances in Marine Biology 26, 249293.CrossRefGoogle Scholar
Davydova, SV, Shebanova, MA and Andreeva, EN (2007) Summer-autumn ichthyoplankton of the sea of Okhotsk and the sea of Japan and special traits of feeding of fish larvae and fry in 2003–2004. Journal of Ichthyology 47, 520532.CrossRefGoogle Scholar
Doyle, MJ, Mier, KL, Busby, MS and Brodeur, RD (2002) Regional variation in springtime ichthyoplankton assemblages in the northeast Pacific Ocean. Progress in Oceanography 53, 247281.CrossRefGoogle Scholar
Dunn, JR (1983) Development and distribution of young of northern smoothtongue, Leuroglossus schmidti (Bathylagidae), in the northeast Pacific, with comments on the systematics of the genus Leuroglossus Gilbert. Fishery Bulletin 81, 2340.Google Scholar
Froese, R and Pauly, D (2024) FishBase. World Wide Web electronic publication. Available at www.fishbase.org, version (06/2024) last accessed 31 July, 2014).Google Scholar
Frost, BW and McCrone, LE (1979) Vertical distribution, diel vertical migration, and abundance of some mesopelagic fishes in the eastern subarctic Pacific Ocean in summer. Fishery Bulletin 76, 751770.Google Scholar
Furuhashi, M and Shimazaki, K (1989) Vertical distribution and diet of Stenobrachius nannochir (Myctophidae) in the southern Bering Sea, summer, 1987. Polar Biology 2, 94104.Google Scholar
Gjøsaeter, J and Kawaguchi, K (1980) A review of the world resources of mesopelagic fish. FAO Fisheries Technical Paper 193, 1151.Google Scholar
Gordon, JDM, Nishida, S and Nemoto, T (1985) The diet of mesopelagic fish from the Pacific coast of Hokkaido, Japan. Journal of the Oceanographical Society of Japan 41, 8997.CrossRefGoogle Scholar
Hidaka, K, Kawaguchi, K, Murakami, M and Takahashi, M (2001) Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance. Deep-Sea Research I 48, 19231939.CrossRefGoogle Scholar
Honda, MC, Wakita, M, Matsumoto, K, Fujiki, T, Siswanto, E, Sasaoka, K, Kawakami, H, Mino, Y, Sukigara, C, Kitamura, M, Sasai, Y, Sherwood, LS, Hashioka, T, Yoshikawa, C, Kimoto, K, Watanabe, S, Kobari, T, Nagata, T, Hamasaki, K, Kaneko, R, Uchimiya, M, Fukuda, H, Abe, O and Saino, T (2017) Comparison of carbon cycle between the western Pacific subarctic and subtropical time-series stations: highlights of the K2S1 project. Journal of Oceanography 73, 647667.CrossRefGoogle Scholar
Houde, ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fishery Bulletin 87, 471495.Google Scholar
Irigoien, X, Klevjer, TA, Røstad, A, Martinez, U, Boyra, G, Acuña, JL, Bode, A, Echevarria, F, Gonzalez-Gordillo, JI, Hernandez-Leon, S, Agusti, S, Aksnes, DL, Duarte, CM and Kaartvedt, S (2014) Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications 5, 3271.CrossRefGoogle ScholarPubMed
Issacs, JD and Kidd, LW (1953) Issacs-Kidd midwater trawl. Final report. Scripps Institute of Oceanography's Oceanographic Equipment Report 1, 123.Google Scholar
Ivanov, OA and Sukhanov, VV (2015) Species structure of pelagic ichthyocenes in Russian Waters of far eastern seas and the Pacific Ocean in 1980–2009. Journal of Ichthyology 55, 497526.CrossRefGoogle Scholar
Jacobsen, JA and Hansen, LP (2001) Feeding habits of wild and escaped farmed Atlantic salmon, Salmo salar L., in the northeast Atlantic. ICES Journal of Marine Science 58, 916933.CrossRefGoogle Scholar
Kajimura, H and Loughlin, TR (1988) Marine mammals in the oceanic food web of the eastern subarctic Pacific. Bulletin of Ocean Research Institute, University of Tokyo 26, 87223.Google Scholar
Kitamura, M and Murata, N (2020) Seasonal occurrence and vertical distribution of larval and juvenile northern smoothtongue, Leuroglossus schmidti (Pisces, Bathylagidae), in the western subarctic Pacific. Journal of Marine Biological Association of the United Kingdom 100, 969977.CrossRefGoogle Scholar
Kitamura, M, Kobari, T, Honda, MC, Matsumoto, K, Sasaoka, K, Nakamura, R and Tanabe, K (2016) Seasonal changes in the mesozooplankton biomass and community structure in subarctic and subtropical time-series stations in the western North Pacific. Journal of Oceanography 72, 387402.CrossRefGoogle Scholar
Kobari, T, Nakamura, R, Aita, MN and Kitamura, M (2022) Mesopelagic community supported by epipelagic production in the western North Pacific Ocean based on stable isotope ratios of carbon and nitrogen. Deep-Sea Research I 182, 103722.CrossRefGoogle Scholar
Kosenok, NS, Chuchukalo, VI and Savinykh, VF (2006) The characteristics of feeding of Diaphus theta in the northwestern part of the Pacific Ocean in the summer-autumn period. Journal of Ichthyology 46, 606612.CrossRefGoogle Scholar
Koval, MV and Karpenko, VI (1998) Feeding of Pacific salmon during anadromous migrations in the Kamchatkan waters. North Pacific Anadromous Fish Commission Document 365, 5 pp.Google Scholar
Kubota, H, Ooseki, Y and Kimura, R (2001) Horizontal distribution of larvae and juveniles of small pelagic fishes collected by a MIKT at the northern edge of warmer water in the Kuroshio-Oyashio transition area in spring. Bulletin of National Research Institute of Fisheries Sciences 16, 5773 (in Japanese with English abstract).Google Scholar
Lanksbury, JA, Duffy-Anderson, JT, Mier, KL and Wilson, MT (2005) Ichthyoplankton abundance, distribution, and assemblage structure in the Gulf of Alaska during September 2000 and 2001. Estuarine, Coastal and Shelf Science 64, 775785.CrossRefGoogle Scholar
Marshall, NB (1951) Bathypelagic fishes as sound scatterers in the ocean. Journal of Marine Research 10, 117.Google Scholar
Mason, JC and Philips, AC (1985) Biology of the bathylagid fish, Leuroglossus schmidti, in the Strait of Georgia, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 42, 11441153.CrossRefGoogle Scholar
Matsumoto, K, Honda, MC, Sasaoka, K, Wakita, M, Kawakami, H and Watanabe, S (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. Journal of Geophysical Research: Oceans 119, 65236534.CrossRefGoogle Scholar
McCormick, MI and Molony, BW (1995) Influence of water temperature during the larval stage on size, age and body condition of a tropical reef fish at settlement. Marine Ecology Progress Series 118, 5968.CrossRefGoogle Scholar
McGowan, DW, Horne, JK and Parker-Stetter, SL (2019) Variability in species composition and distribution of forage fish in the Gulf of Alaska. Deep-Sea Research II 165, 221237.CrossRefGoogle Scholar
Miller, CB, Frost, BW, Batchelder, HP, Clemons, MJ and Conway, RE (1984) Life histories of large, grazing copepods in a Subarctic Ocean Gyre: Neocalanus plumchrus, Neocalanus cristatus, and Eucalanus bungii in the northeast Pacific. Progress in Oceanography 13, 201243.CrossRefGoogle Scholar
Miya, M and Nemoto, T (1987) Reproduction, growth and vertical distribution of the meso- and bathypelagic fish Cyclothone atraria (Pisces: Gonostomatidae) in Sagami Bay, central Japan. Deep-Sea Research 34, 15651577.CrossRefGoogle Scholar
Moku, M, Kawaguchi, K, Watanabe, H and Ohno, A (2000) Feeding habits of three dominant myctophid fishes, Diaphus theta, Stenobrachius leucopsarus and S. nannochir, in the subarctic and transitional waters of the western North Pacific. Marine Ecology Progress Series 207, 129140.CrossRefGoogle Scholar
Moku, M, Tsuda, A and Kawaguchi, K (2003) Spawning season and migration of the myctophid fish Diaphus theta in the western North Pacific. Ichthyological Research 50, 5258.CrossRefGoogle Scholar
Mukhametva, ON and Mukhametov, IN (2022) Species composition of fish eggs and larvae near southeast Sakhalin dynamic coastal conditions. Journal of Ichthyology 62, 605622.CrossRefGoogle Scholar
Nagaiwa, R, Tachibana, A and Moteki, M (2023) Occurrence patterns of larval mesopelagic fishes in the mouth of highly eutrophic Tokyo Bay, central Japan. Journal of Oceanography 79, 223240.CrossRefGoogle Scholar
Nakabo, T (2013) Fishes of Japan with Pictorial Keys to the Species, 3rd Edn. Kanagawa, Japan: Tokai University Press, pp. 12428.Google Scholar
Nelson, JS, Grande, TC and Wilson, MVH (2016) Fishes of the World, 4th Edn. Hoboken, New Jersey: John Wiley & Sons, pp. 1752.CrossRefGoogle Scholar
Nishikawa, J, Nishida, S, Moku, M, Hidaka, K and Kawaguchi, K (2001) Biomass, abundance, and vertical distribution of micronekton and large gelatinous zooplankton in the subarctic Pacific and the Bering Sea during the summer of 1997. Journal of Oceanography 57, 361375.CrossRefGoogle Scholar
Norcross, BL, McKinnell, SM, Frandsen, M, Musgrave, DL and Sweet, SR (2003) Larval fishes in relation to water masses of the central North Pacific transition areas, including the shelf break of west-central Alaska. Journal of Oceanography 59, 445460.CrossRefGoogle Scholar
Ohizumi, H, Kuramochi, T, Kubodera, T, Yoshioka, M and Miyazaki, N (2003) Feeding habits of Dall's porpoises (Phocoenoides dalli) in the subarctic North Pacific and the Bering Sea basin and the impact of predation on mesopelagic micronekton. Deep-Sea Research I 50, 593610.CrossRefGoogle Scholar
Orlov, AM (1997) Ecological characteristics of the feeding of some Pacific predatory fish of south-east Kamchatka and northern Kuril Islands. Russian Journal of Aquatic Ecology 6, 5974.Google Scholar
Orlov, AM and Tokranov, AM (2019) Checklist of deep-sea fishes of the Russian northwestern Pacific Ocean found at depths below 1000 m. Progress in Oceanography 176, 102143.CrossRefGoogle Scholar
Pak, G, Noh, J, Park, YG, Jin, H and Park, JH (2022) Governing factors of the record-breaking marine heatwave over the mid-latitude western North Pacific in the summer 2021. Frontiers in Marine Science 9, 946767.CrossRefGoogle Scholar
Pearcy, WG, Krygier, EE, Mesecar, R and Ramsey, F (1977) Vertical distribution and migration of oceanic micronekton off Oregon. Deep-Sea Research 24, 223245.CrossRefGoogle Scholar
Phillips, KL, Jackson, GD and Nichols, PD (2001) Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard islands: stomach contents and fatty acid analysis. Marine Ecology Progress Series 215, 179189.CrossRefGoogle Scholar
Phleger, CF (1998) Buoyancy in marine fishes: direct and indirect role of lipids. American Zoologist 38, 321330.CrossRefGoogle Scholar
Qiu, B (2023) Observational and theoretical studies on the North Pacific upper ocean circulation and its variability. Oceanography in Japan 32, 6793.CrossRefGoogle Scholar
Sabates, A (2004) Diel vertical distribution of fish larvae during the winter-mixing period in the Northwestern Mediterranean. ICES Journal of Marine Science 61, 12431252.CrossRefGoogle Scholar
Saito, H and Murata, M (1996) The high content of monoene fatty acid in the lipids of some midwater fishes: family Myctophidae. Lipids 31, 757763.CrossRefGoogle ScholarPubMed
Sanger, GA and Ainley, DG (1988) Review of the distribution and feeding ecology of seabirds in the subarctic North Pacific Ocean. Bulletin of Ocean Research Institute, University of Tokyo 26, 161186.Google Scholar
Sassa, C (2019) Reproduction and early life history of mesopelagic fishes in the Kuroshio region: a review of recent advances. In Nagai, T, Saito, H, Suzuki, K and Takahashi, M (eds), Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics, Geophysical Monograph 243. Hoboken, NJ: John Wiley & Sons, Inc, pp. 273294.CrossRefGoogle Scholar
Sassa, C, Kawaguchi, K, Hirota, Y and Ishida, M (2004a) Distribution patterns of larval myctophid fish assemblages in the subtropical-tropical waters of western North Pacific. Fisheries Oceanography 13, 267282.CrossRefGoogle Scholar
Sassa, C, Kawaguchi, K, Oozeki, Y, Kubota, H and Sugisaki, H (2004b) Distribution patterns of larval myctophid fishes in the transition region of the western North Pacific. Marine Biology 144, 417428.CrossRefGoogle Scholar
Sassa, C, Kawaguchi, K and Taki, K (2007) Larval mesopelagic fish assemblages in the Kuroshio-Oyashio transition region of the western North Pacific. Marine Biology 150, 14031415.CrossRefGoogle Scholar
Smoker, WW (1970) Growth and reproduction of the Stenobrachius leucopsarus (Thesis for Master of Science). Oregon State University, pp. 138.Google Scholar
Sobolevsky, YI and Sokolovskaya, TG (1996) Development and distribution of the young of northern smoothtongue (Leuroglossus schmidti) in the north-west Pacific Ocean and western Bering Sea. In Mathisen OA and Coyle KO (eds), Ecology of the Bering Sea: A review of Russian literature. Alaska Sea Grant College Program Report 96–01. Fairbanks, AK: University of Alaska, Fairbanks, pp. 257263.Google Scholar
Stein, DL (1980) Description and occurrence of macrourid larvae and juveniles in the northeast Pacific Ocean off Oregon, U.S.A. Deep-Sea Research Part A 27, 889900.CrossRefGoogle Scholar
Sydeman, WJ, Thompson, SA, Santra, JA, Henry, ME, Morgan, KH and Batten, SD (2010) Macro-ecology of plankton-seabird associations in the Northern Pacific Ocean. Journal of Plankton Research 32, 16971713.CrossRefGoogle Scholar
Takahashi, T, Sutherland, SC, Sweeney, C, Poisson, A, Metzl, N, Tilbrook, B, Bates, N, Wanninkhof, R, Feely, RA, Sabine, C, Olafsson, J and Nojiri, Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II 49, 16011622.CrossRefGoogle Scholar
Taniguchi, R, Amei, K, Tokuhiro, K, Yamada, Y, Kitamura, M and Yamaguchi, A (2023) Diel, seasonal and vertical changes in the pelagic amphipod communities in the subarctic Pacific: insights from imaging analysis. Journal of Plankton Research 45, 554570.CrossRefGoogle Scholar
Tsukamoto, K (1993) Gyoruino yuuei undou (Swimming of fish: adaptation to underwater). Comparative Physiology and Biochemistry 10, 249262 (in Japanese).Google Scholar
Tsukamoto, Y, Zenitani, H, Kimura, R, Watanabe, Y and Oozeki, Y (2001) Vertical distribution of fish larvae in the Kuroshio and Kuroshio-Oyashio transition region in early summer. Bulletin of National Research Institute of Fisheries Science 16, 3956.Google Scholar
Vollenweider, JJ, Heintz, RA, Schaufler, L and Bradshaw, R (2011) Seasonal cycle in whole-body proximate composition and energy content of forage fish vary with water depth. Marine Biology 158, 413427.CrossRefGoogle ScholarPubMed
Watanabe, H, Moku, M, Kawaguchi, K, Ishimaru, K and Ohno, A (1999) Diel vertical migration of myctophid fishes (Family Myctophidae) in the transitional waters of the western North Pacific. Fisheries Oceanography 8, 115127.CrossRefGoogle Scholar
Watanabe, H, Kubodera, T, Ichii, T and Kawahara, S (2004) Feeding habits of neon flying squid Ommastrephes bartramii in the transition region of the central North Pacific. Marine Ecology Progress Series 266, 173184.CrossRefGoogle Scholar
Watanabe, H, Sassa, C and Ishida, M (2010) Late winter vertical distribution of mesopelagic fish larvae in the Kuroshio Current region of the western North Pacific. Bulletin of the Japanese Society of Fisheries Oceanography 74, 153158.Google Scholar
Watanuki, Y and Thiebot, JB (2018) Factors affecting the importance of myctophids in the diet of the world's seabirds. Marine Biology 165, 79.CrossRefGoogle Scholar
Willis, JM and Pearcy, WG (1982) Vertical distribution and migration of fishes of the lower mesopelagic zone off Oregon. Marine Biology 70, 8798.CrossRefGoogle Scholar
Willis, JM, Pearcy, WG and Parin, NV (1988) Zoogeography of midwater fishes in the subarctic Pacific. Bulletin of Ocean Research Institute, University of Tokyo 26, 79142.Google Scholar
Yamaguchi, A, Watanabe, Y, Ishida, H, Harimoto, T, Furusawa, K, Suzuki, S, Ishizaka, J, Ikeda, T and Takahashi, MM (2002) Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep-Sea Research I 49, 10071025.CrossRefGoogle Scholar
Supplementary material: File

Kitamura and Murata supplementary material

Kitamura and Murata supplementary material
Download Kitamura and Murata supplementary material(File)
File 30.6 KB