Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-05-04T08:25:46.819Z Has data issue: false hasContentIssue false

A foreign settler: the anthropogenic displacement of sea cucumbers through fisheries discards

Published online by Cambridge University Press:  18 September 2024

Nuno Castro*
Affiliation:
MARE – Marine and Environmental Sciences Centre/ARNET – Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI) Funchal, Madeira, Portugal MARE – Marine and Environmental Sciences Centre/ARNET – Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Filipe Romão
Affiliation:
CERIS – Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
Pedro M. Félix
Affiliation:
MARE – Marine and Environmental Sciences Centre/ARNET – Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
*
Corresponding author: Nuno Castro; Email: [email protected]

Abstract

This study describes the presence of the royal cucumber Parastichopus regalis (Cuvier, 1817) in The Natural Park of Ria Formosa (NPRF), Portugal. A single individual was observed during a monitoring scuba dive at a depth of 3 m inside this shallow mesotidal lagoon. The most plausible explanation for this occurrence is attributed to the rejection by trawlers when returning to their home port from their fishing grounds. This marine species has a deeper distribution outside the lagoon and is commonly captured as by-catch and subsequently discarded. This study also alerts us to the growing presence of non-indigenous species and the emergent threat of new invasions, highlighting the need to adopt biosecurity measures, like good practices for fishers when dealing with discards to avoid new species introductions in this fragile coastal marine habitat.

Type
Marine Record
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Azevedo e Silva, F, Brito, AC, Simões, T, Pombo, A, Marques, TA, Rocha, C, Sousa, J, Venâncio, E and Félix, PM (2021) Allometric relationships to assess ontogenetic adaptative changes in three NE Atlantic commercial sea cucumbers (Echinodermata, Holothuroidea). Aquatic Ecology 55, 711720.CrossRefGoogle Scholar
Bailey, SA, Brown, L, Campbell, ML, Canning-Clode, J, Carlton, JT, Castro, N, Chainho, P, Chan, FT, Creed, JC, Curd, A, Darling, J, Fofonoff, P, Galil, BS, Hewitt, CL, Inglis, GJ, Keith, I, Mandrak, NE, Marchini, A, McKenzie, CH, Occhipinti-Ambrogi, A, Ojaveer, H, Pires-Teixeira, LM, Robinson, TB, Ruiz, GM, Seaward, K, Schwindt, E, Son, MO, Therriault, TW and Zhan, A (2020) Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: a 50-year perspective. Diversity and Distributions 26, 17801797.CrossRefGoogle ScholarPubMed
Bax, N, Williamson, A, Aguero, M, Gonzalez, E and Geeves, W (2003) Marine invasive alien species: a threat to global biodiversity. Emerg Issues Oceans Coasts Isl 27, 313323.Google Scholar
Borges, TC (2007) Biodiversity in the fisheries of Algarve (South Portugal). Faro, Portugal: Universidade do Algarve.Google Scholar
Borges, TC, Erzini, K, Bentes, L, Costa, ME, Gonçalves, JM, Lino, PG, Pais, C and Ribeiro, J (2001). By-catch and discarding practices in five Algarve (southern Portugal) métiers. Journal of Applied Ichthyology 17, 104114.CrossRefGoogle Scholar
Brooks, TM, Mittermeier, RA, Mittermeier, CG, Da Fonseca, GAB, Rylands, AB, Konstant, WR, Flick, P, Pilgrim, J, Oldfield, S, Magin, G and Hilton-Taylor, C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16, 909923.CrossRefGoogle Scholar
Bueno-Pardo, J, Ramalho, SP, García-Alegre, A, Morgado, M, Vieira, RP, Cunha, MR and Queiroga, H (2017) Deep-sea crustacean trawling fisheries in Portugal: quantification of effort and assessment of landings per unit effort using a Vessel Monitoring System (VMS). Scientific Reports 7, 40795.CrossRefGoogle ScholarPubMed
Burgess, MG, Polasky, S and Tilman, D (2013) Predicting overfishing and extinction threats in multispecies fisheries. Proceedings of the National Academy of Sciences 110, 1594315948.CrossRefGoogle ScholarPubMed
Cabral, S, Alves, AS, Castro, N, Chainho, P, , E, da Fonseca, LC, Fidalgo e Costa, P, Castro, J, Canning-Clode, J, Pombo, A and Costa, JL (2019) Polychaete annelids as live bait in Portugal: harvesting activity in brackish water systems. Ocean & Coastal Management 181, 104890.CrossRefGoogle Scholar
Cahill, AE, Aiello-Lammens, ME, Fisher-Reid, MC, Hua, X, Karanewsky, CJ, Yeong Ryu, H, Sbeglia, GC, Spagnolo, F, Waldron, JB, Warsi, O and Wiens, JJ (2013) How does climate change cause extinction? Proceedings of the Royal Society of London B Biological Sciences 280, 20121890.CrossRefGoogle ScholarPubMed
Caldwell, IR and Vincent, ACJ (2012) Revisiting two sympatric European seahorse species: apparent decline in the absence of exploitation.CrossRefGoogle Scholar
Castro, N, Ramalhosa, P, Jiménez, J, Costa, JL, Gestoso, I and Canning-Clode, J (2020). Exploring marine invasions connectivity in a NE Atlantic Island through the lens of historical maritime traffic patterns. Regional Studies in Marine Science 37, 101333.CrossRefGoogle Scholar
Castro, N, Schäfer, S, Parretti, P, Monteiro, J, Gizzi, F, Chebaane, S, Almada, E, Henriques, F, Freitas, M, Vasco-Rodrigues, N, Silva, R, Radeta, M, Freitas, R and Canning-Clode, J (2021) A new signal of tropicalisation in the Northeast Atlantic: the spread of the spotfin burrfish Chilomycterus reticulatus in Madeira Archipelago and its invasion risk. Diversity 13, 639.CrossRefGoogle Scholar
Chalkowski, K, Lepczyk, CA and Zohdy, S (2018) Parasite ecology of invasive species: conceptual frame-work and new hypotheses. Trends in Parasitology 34, 655663.CrossRefGoogle Scholar
Clavero, M and García-Berthou, E (2005) Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution 20, 110.CrossRefGoogle ScholarPubMed
Dereli̇, H and Aydın, M (2021) Sea cucumber fishery in Turkey: management regulations and their efficiency. Regional Studies in Marine Science 41, 101551.CrossRefGoogle Scholar
Diagne, C, Leroy, B, Vaissière, AC, Gozlan, RE, Roiz, D, Jarić, I, Salles, J-M, Bradshaw, CJA and Courchamp, F (2021) High and rising economic costs of biological invasions worldwide. Nature 592, 571576.CrossRefGoogle ScholarPubMed
Erzini, K, Costa, ME, Bentes, L and Borges, TC (2002) A comparative study of the species composition of discards from five fisheries from the Algarve (southern Portugal). Fisheries Management and Ecology 9, 3140.CrossRefGoogle Scholar
Erzini, K, Parreira, F, Sadat, Z, Castro, M, Bentes, L, Coelho, R, Gonçalves, JMS, Lino, PG, Martinez-Crego, B, Monteiro, P, Oliveira, F, Ribeiro, J, de los Santos, CB and Santos, R (2022) Influence of seagrass meadows on nursery and fish provisioning ecosystem services delivered by Ria Formosa, a coastal lagoon in Portugal. Ecosystem Services 58, 101490.CrossRefGoogle Scholar
Félix, PM, Pombo, A, Azevedo e Silva, F, Simões, T, Marques, TA, Melo, R, Rocha, C, Sousa, J, Venâncio, E, Costa, JL and Brito, AC (2021) Modelling the distribution of a commercial NE-atlantic sea cucumber, Holothuria mammata: demographic and abundance spatio-temporal patterns. Frontiers in Marine Science 8, 675330. https://doi.org/10.3389/fmars.2021.675330CrossRefGoogle Scholar
Floren, AS, Hayashizaki, K, Putchakarn, S, Tuntiprapas, P and Prathep, A (2021) A review of factors influencing the seagrass-sea cucumber association in tropical seagrass meadows. Frontiers in Marine Science 8, 19.CrossRefGoogle Scholar
González-Wangüemert, M, Maggi, C, Valente, S, Martínez-Garrido, J and Vasco-Rodrigues, N (2014) Parastichopus regalis – the main host of Carapus acus in temperate waters of the Mediterranean sea and northeastern Atlantic Ocean. SPC Beche-de-mer Information Bulletin 34, 3842.Google Scholar
Graczyk, TK, Conn, DB, Lucy, F, Minchin, D, Tamang, L, Moura, LN and DaSilva, AJ (2004) Human waterborne parasites in zebra mussels (Dreissena polymorpha) from the Shannon River drainage area, Ireland. Parasitology Research 93, 385391.CrossRefGoogle ScholarPubMed
Green, SJ, Akins, JL, Maljković, A and Côté, IM (2012) Invasive lionfish drive Atlantic coral reef fish declines. PLOS ONE 7, e32596.CrossRefGoogle ScholarPubMed
Hulme, PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalisation. Journal of Applied Ecology 46, 1018.CrossRefGoogle Scholar
IMO (2020) Available at https://imo.org/Google Scholar
MacTavish, T, Stenton-Dozey, J, Vopel, K and Savage, C (2012) Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS One 7, e50031.CrossRefGoogle ScholarPubMed
Maggi, C and González-Wangüemert, M (2015) Genetic differentiation among Parastichopus regalis populations from western Mediterranean sea: potential effects of its fishery and current connectivity. Mediterranean Marine Science 16, 489501.CrossRefGoogle Scholar
Marquet, N, Conand, C, Power, DM, Canário, AVM and González-Wangüemert, M (2017) Sea cucumbers, Holothuria arguinensis and H. mammata, from the southern Iberian Peninsula: Variation in reproductive activity between populations from different habitats. Fisheries Research 191, 120130.CrossRefGoogle Scholar
Monteiro, P, Araújo, A, Erzini, K and Castro, M (2001) Discards of the Algarve (southern Portugal) crustacean trawl fishery. Hydrobiologia 449, 267277.CrossRefGoogle Scholar
Morais, P, Gaspar, M, Garel, E, Baptista, V, Cruz, J, Cerveira, I, Leitão, F and Teodosio, MA (2019) The Atlantic blue crab Callinectes sapidus Rathbun, 1896 expands its non-native distribution into the Ria Formosa lagoon and the Guadiana estuary (SW-Iberian Peninsula, Europe). BioInvasions Records 8, 111.CrossRefGoogle Scholar
Moratal, S, Magnet, A, Izquierdo, F, del Águila, C, López-Ramon, J and Dea-Ayuela, MA (2023) Microsporidia in commercially harvested marine fish: a potential health risk for consumers. Animals 13, 2673.CrossRefGoogle Scholar
Newton, A, Brito, AC, Icely, JD, Derolez, V, Clara, I, Angus, S, Scherneski, G, Inácio, M, Lillebo, A I, Sousa, AI, Béjaoui, B, Solidoro, C., Tosic, M, Cañedo-Arguelles, M, Yamamuro, M, Reizopoulou, S, Tseng, H, Canu, D, Roselli, L, Maanan, M, Cristina, S, Ruiz-Fernández, AC, de Lima, R, Kjerfve, B, Rubio-Cisneros, N, Pérez-Ruzafa, A, Marcos, C, Pastres, R, Pranovi, F, Snoussi, M, Turpie, J, Tuchkovenko, Y, Dyack, B, Brookes, J, Povilanskas, R and Khokhlov, V (2018) Assessing, quantifying and valuing the ecosystem services of coastal lagoons. Journal for Nature Conservation 44, 5065.CrossRefGoogle Scholar
Oliveira, J, Castilho, F, Cunha, Â and Pereira, MJ (2013) Bivalve harvesting and production in Portugal: an overview. Journal of Shellfish Research 32, 911924.Google Scholar
Parreira, F, Martínez-Crego, B, Afonso, CML, Machado, M, Oliveira, F, dos Santos Gonçalves, JM and Santos, R (2021) Biodiversity consequences of Caulerpa prolifera takeover of a coastal lagoon. Estuarine, Coastal and Shelf Science 255, 107344.CrossRefGoogle Scholar
Purcell, SW, Mercier, A, Conand, C, Hamel, J-F, Toral-Granda, MV, Lovatelli, A and Uthicke, S (2013) Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish and Fisheries 14, 3459.CrossRefGoogle Scholar
R Core Team (2021) R: A language and environment for statistical computing. Available at https://www.R-project.org/Google Scholar
Ramón, M, Lleonart, J and Massutí, E (2010) Royal cucumber (Stichopus regalis) in the northwestern Mediterranean: distribution pattern and fishery. Fisheries Research 105, 2127.CrossRefGoogle Scholar
Ramón, M, Amor, MJ and Galimany, E (2022) Reproductive biology of the holothurian Parastichopus regalis in the Mediterranean Sea and its implications for fisheries management. Fisheries Research 247, 106191.CrossRefGoogle Scholar
Sempere-Valverde, J, Ostalé-Valriberas, E, Maestre, M, Aranda, RG, Bazairi, H and Espinosa, F (2021) Impacts of the non-indigenous seaweed Rugulopteryx okamurae on a Mediterranean coralligenous community (Strait of Gibraltar): The role of long-term monitoring. Ecological Indicators 121, 107135.CrossRefGoogle Scholar
Sheets, EA, Cohen, CS, Ruiz, GM and da Rocha, RM (2016) Investigating the widespread introduction of a tropical marine fouling species. Ecology and Evolution 6, 24532471.CrossRefGoogle ScholarPubMed
Siegenthaler, A, Canovas, F and Wanguemert, MG (2017) Outlanders in an unusual habitat: Holothuria mammata (Grube, 1840) behaviour on seagrass meadows from Ria Formosa (S Portugal). Turkish Journal of Fisheries and Aquatic Sciences 17, 10311038.CrossRefGoogle Scholar
Tsagarakis, K, Nikolioudakis, N, Papandroulakis, N, Vassilopoulou, V and Machias, A (2018) Preliminary assessment of discards survival in a multi-species Mediterranean bottom trawl fishery. Journal of Applied Ichthyology 34, 842849.CrossRefGoogle Scholar
Vilà, M and Hulme, PE (2017) Non-native species, ecosystem services, and human well-being. In Vilà, M and Hulme, PE (eds), Impact of Biological Invasions on Ecosystem Services. Cham: Springer International Publishing, pp. 114.CrossRefGoogle Scholar
Whalen, MA, Millard-Martin, B, Cox, KD, Lemay, MA and Paulay, G (2020) Poleward range expansion of invasive bopyrid isopod, Orthione griffenis Markham, 2004, confirmed by establishment in Central British Columbia, Canada. BioInvasions Record 9, 538548.CrossRefGoogle Scholar
White, VC, Morado, JF and Friedman, CS (2014) Ichthyophonus-infected walleye pollock Theragra chalcogramma (Pallas) in the eastern Bering Sea: a potential reservoir of infections in the North Pacific. Journal of Fish Diseases 37, 641655.CrossRefGoogle Scholar
Wirtz, P (2009) Ten new records of marine invertebrates from the Azores. Arquipelago, Life and Marine Sciences 26, 4549.Google Scholar