Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-28T07:48:16.698Z Has data issue: false hasContentIssue false

Interoception after frontal brain injury: A systematic review

Published online by Cambridge University Press:  25 April 2025

Alice Bodart*
Affiliation:
Cognitive Psychology and Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Mons, Mons, Belgium
Sandra Invernizzi
Affiliation:
Cognitive Psychology and Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Mons, Mons, Belgium
Laurent Lefebvre
Affiliation:
Cognitive Psychology and Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Mons, Mons, Belgium
Mandy Rossignol
Affiliation:
Cognitive Psychology and Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Mons, Mons, Belgium
*
Corresponding author: Alice Bodart; Email: [email protected]

Abstract

Objective:

Interoception is crucial for emotional processing. It relies on the bidirectional connections between the insula, a crucial structure in interoception, and the frontal lobe, which is implicated in emotional experiences. Acquired frontal brain injury often leads to emotional disorders. Our goal was to explore the interoceptive profiles of patients with frontal lesions with or without insular involvement.

Method:

Given the neuroanatomical links between interoception and emotions, we conducted a systematic Preferred Reporting Items for Systematic Reviews and Meta-analyses guided review of studies assessing at least one dimension of interoception in adults with acquired frontal injuries, with or without associated insular lesions.

Results:

Seven articles were included. The review indicated that interoceptive accuracy declines after frontal injuries. The two studies that investigated interoceptive sensitivity found lower scores in patient groups. Finally, inconsistent results were found for interoceptive metacognition after frontal damage.

Conclusions:

This review is the first to explore interoceptive disorders after acquired frontal brain injury. The findings reveal deficits in cardiac interoceptive accuracy and interoceptive sensitivity following frontal damage. Inconsistent results were observed for interoceptive metacognition. Further research is needed to confirm the presence of interoceptive deficits following a frontal lesion. Additionally, the relationship between interoceptive deficits and emotional disorders, often reported after frontal brain injury, should be investigated.

Type
Critical Review
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abrevaya, S., Fittipaldi, S., García, A. M., Dottori, M., Santamaria-Garcia, H., Birba, A., & Ibáñez, A. (2020). At the heart of neurological dimensionality: Cross-nosological and multimodal cardiac interoceptive deficits. Psychosomatic Medicine, 82(9), 850–861.CrossRefGoogle ScholarPubMed
Acabchuk, R. L., Brisson, J. M., Park, C. L., Babbott-Bryan, N., Parmelee, O. A., & Johnson, B. T. (2021). Therapeutic effects of meditation, yoga, and mindfulness-based interventions for chronic symptoms of mild traumatic brain injury: A systematic review and meta-analysis. Applied Psychology: Health and Well-Being, 13(1), 3462.Google ScholarPubMed
Adams, A. G., Schweitzer, D., Molenberghs, P., & Henry, J. D. (2019). A meta-analytic review of social cognitive function following stroke. Neuroscience & Biobehavioral Reviews, 102, 400416.CrossRefGoogle ScholarPubMed
Adolfi, F., Couto, B., Richter, F., Decety, J., Lopez, J., Sigman, M., Manes, F., Ibáñez, A. (2017). Convergence of interoception, emotion, and social cognition: A twofold fMRI meta-analysis and lesion approach. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 88, 124142.CrossRefGoogle ScholarPubMed
Andriessen, T. M. J. C., Jacobs, B., & Vos, P. E. (2010). Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. Journal of Cellular and Molecular Medicine, 14(10), 23812392.CrossRefGoogle ScholarPubMed
Ardila, A. (2013). There are two different dysexecutive syndromes. Journal of Neurological Disorders, 1(1), 1–4.CrossRefGoogle Scholar
Berntson, G. G., & Khalsa, S. S. (2021). Neural circuits of interoception. Trends in Neurosciences, 44(1), 1728.CrossRefGoogle ScholarPubMed
Bivona, U., Ciurli, P., Barba, C., Onder, G., Azicnuda, E., Silvestro, D., Mangano, R., Rigon, J., & Formisano, R. (2008). Executive function and metacognitive self-awareness after Severe Traumatic Brain Injury. Journal of the International Neuropsychological Society, 14(5), 862–868. https://doi.org/10.1017/S1355617708081125 CrossRefGoogle ScholarPubMed
Bodart, A., Invernizzi, S., De Leener, M., Lefebvre, L., & Rossignol, M. (2024). The duration discrimination respiratory task: A new test to measure respiratory interoceptive accuracy. Psychophysiology, 61(10), e14632. https://doi.org/10.1111/psyp.14632 CrossRefGoogle ScholarPubMed
Bodart, A., Invernizzi, S., Lefebvre, L., & Rossignol, M. (2023). Physiological reactivity at rest and in response to social or emotional stimuli after a traumatic brain injury: A systematic review. Frontiers in Psychology, 14, 930177. https://www.frontiersin.org/articles/10.3389/fpsyg.2023.930177 CrossRefGoogle ScholarPubMed
Bonaz, B., Lane, R. D., Oshinsky, M. L., Kenny, P. J., Sinha, R., Mayer, E. A., & Critchley, H. D. (2021). Diseases, disorders, and comorbidities of interoception. Trends in Neurosciences, 44(1), 3951.CrossRefGoogle ScholarPubMed
Bossu, P., Salani, F., Cacciari, C., Picchetto, L., Cao, M., Bizzoni, F., Rasura, M., Caltagirone, C., Robinson, R., Orzi, F., & Spalletta, G. (2009). Disease Outcome, Alexithymia and Depression are Differently Associated with Serum IL-18 Levels in Acute Stroke. Current Neurovascular Research, 6(3), 163170. https://doi.org/10.2174/156720209788970036 CrossRefGoogle ScholarPubMed
Boucher, O., Rouleau, I., Lassonde, M., Lepore, F., Bouthillier, A., & Nguyen, D. K. (2015). Social information processing following resection of the insular cortex. Neuropsychologia, 71, 110.CrossRefGoogle ScholarPubMed
Bramlett, H. M., & Dietrich, W. D. (2004). Pathophysiology of Cerebral Ischemia and brain trauma : Similarities and differences. Journal of Cerebral Blood Flow & Metabolism, 24(2), 133150.CrossRefGoogle ScholarPubMed
Brewer, R., Cook, R., & Bird, G. (2016). Alexithymia: A general deficit of interoception. Royal Society Open Science, 3(10), 150664.CrossRefGoogle ScholarPubMed
Campanella, F., Shallice, T., Ius, T., Fabbro, F., & Skrap, M. (2014). Impact of brain tumour location on emotion and personality : A voxel-based lesion-symptom mapping study on mentalization processes. Brain, 137(9), 25322545.CrossRefGoogle Scholar
Canales-Johnson, A., Silva, C., Huepe, D., Rivera-Rei, Á., Noreika, V., Garcia, M.delC., Silva, W., Ciraolo, C., Vaucheret, E., Sedeño, L., Couto, B., Kargieman, L., Baglivo, F., Sigman, M., Chennu, S., Ibáñez, A., Rodríguez, E., & Bekinschtein, T. A. (2015). Auditory feedback differentially modulates behavioral and neural markers of objective and subjective performance when tapping to your heartbeat. Cerebral Cortex, 25(11), 44904503.CrossRefGoogle ScholarPubMed
Candia-Rivera, D., Sappia, M. S., Horschig, J. M., Colier, W. N. J. M., & Valenza, G. (2022). Confounding effects of heart rate, breathing rate, and frontal fNIRS on interoception. Scientific Reports, 12(1), 20701.CrossRefGoogle ScholarPubMed
Colantonio, A. (2016). Sex, gender, and traumatic brain injury: A commentary. Archives of Physical Medicine and Rehabilitation, 97(2), S1S4.CrossRefGoogle ScholarPubMed
Couto, B., Adolfi, F., Sedeño, L., Salles, A., Canales-Johnson, A., Alvarez-Abut, P., Garcia-Cordero, I., Pietto, M., Bekinschtein, T., Sigman, M., Manes, F., & Ibanez, A. (2015). Disentangling interoception: Insights from focal strokes affecting the perception of external and internal milieus. Frontiers in Psychology, 6, 503.CrossRefGoogle ScholarPubMed
Craig, A. D.(Bud) (2009). Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philosophical Transactions of the Royal Society of London Series B, 364(1525), 19331942.CrossRefGoogle Scholar
Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 714.CrossRefGoogle ScholarPubMed
Dal Monte, O., Krueger, F., Solomon, J. M., Schintu, S., Knutson, K. M., Strenziok, M., Pardini, M., Leopold, A., Raymont, V., & Grafman, J. (2013). A voxel-based lesion study on facial emotion recognition after penetrating brain injury. Social Cognitive and Affective Neuroscience, 8(6), 632639.CrossRefGoogle Scholar
Damasio, A. R., Everitt, B. J., Bishop, D., Roberts, A. C., Robbins, T. W., & Weiskrantz, L. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London Series B, 351(1346), 14131420.Google ScholarPubMed
Desdentado, L., Miragall, M., Llorens, R., Navarro, M. D., & Baños, R. M. (2023). Identifying and regulating emotions after acquired brain injury: The role of interoceptive sensibility. Frontiers in Psychology, 14, 1268926, Retrieved from https://doi.org/10.3389/fpsyg.2023.1268926 CrossRefGoogle ScholarPubMed
Desmedt, O., Heeren, A., Corneille, O., & Luminet, O. (2022). What do measures of self-report interoception measure? Insights from a systematic review, latent factor analysis, and network approach. Biological Psychology, 169, 108289.CrossRefGoogle ScholarPubMed
Desmedt, O., Luminet, O., Maurage, P., & Corneille, O. (2023). Discrepancies in the definition and measurement of human interoception: A comprehensive discussion and suggested ways forward. Perspectives on Psychological Science, 20(1), 7698. doi: 10.1177/17456916231191537 CrossRefGoogle ScholarPubMed
Eslinger, P. J., & Reichwein, R. K. (2001). Frontal lobe stroke syndromes. In Bogousslavsky, J. & Caplan, L. R. (Eds.), Stroke Syndromes (2nd ed., pp. 232–241). Cambridge University Press. https://doi.org/10.1017/CBO9780511586521.018 Google Scholar
Fang, S., Wang, Y., & Jiang, T. (2016). The influence of frontal lobe tumors and surgical treatment on advanced cognitive functions. World Neurosurgery, 91, 340346.CrossRefGoogle ScholarPubMed
Farrington, D. P. (2003). Methodological quality standards for evaluation research. Annals of the American Academy of Political and Social Science, 587(1), 4968.CrossRefGoogle Scholar
Fournié, C., Chouchou, F., Dalleau, G., Caderby, T., Cabrera, Q., & Verkindt, C. (2021). Heart rate variability biofeedback in chronic disease management: A systematic review. Complementary Therapies in Medicine, 60, 102750.CrossRefGoogle ScholarPubMed
Fynn, D. M., Preece, D. A., Gignac, G. E., Pestell, C. F., Weinborn, M., & Becerra, R. (2023). Alexithymia as a risk factor for poor emotional outcomes in adults with acquired brain injury. Neuropsychological Rehabilitation, 33(10), 1650–1671.CrossRefGoogle ScholarPubMed
Gao, Q., Ping, X., & Chen, W. (2019). Body influences on social cognition through interoception. Frontiers in Psychology, 10, 2066.CrossRefGoogle ScholarPubMed
García-Cordero, I., Sedeño, L., de la Fuente, L., Slachevsky, A., Forno, G., Klein, F., Lillo, P., Ferrari, J., Rodriguez, C., Bustin, J., Torralva, T., Baez, S., Yoris, A., Esteves, S., Melloni, M., Salamone, P., Huepe, D., Manes, F., García, A. M., & Ibañez, A. (2016). Feeling, learning from and being aware of inner states: Interoceptive dimensions in neurodegeneration and stroke. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1708), 20160006.CrossRefGoogle ScholarPubMed
Gardner, A. J., & Zafonte, R. (2016). Chapter 12—Neuroepidemiology of traumatic brain injury. In Aminoff, M. J., Boller, F., & Swaab, D. F. (Eds.), Handbook of Clinical Neurology (vol. 138, pp. 207223). Elsevier, https://doi.org/10.1016/B978-0-12-802973-2.00012-4 Google Scholar
Garfinkel, S. N., Schulz, A., & Tsakiris, M. (2022). Addressing the need for new interoceptive methods. Biological Psychology, 170, 108322.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104, 6574.CrossRefGoogle ScholarPubMed
Gasquoine, P. G. (2014). Contributions of the insula to cognition and emotion. Neuropsychology Review, 24(2), 7787.CrossRefGoogle ScholarPubMed
Gibson, C. L. (2013). Cerebral ischemic stroke: Is gender important? Journal of Cerebral Blood Flow and Metabolism, 33(9), 13551361.CrossRefGoogle ScholarPubMed
Goldman, A. I., & Sripada, C. S. (2005). Simulationist models of face-based emotion recognition. Cognition, 94(3), 193213.CrossRefGoogle ScholarPubMed
Grabauskaitė, A., Baranauskas, M., & Griškova-Bulanova, I. (2017). Interoception and gender : What aspects should we pay attention to? Consciousness and Cognition, 48, 129137.CrossRefGoogle ScholarPubMed
Grossi, D., di Vita, A., Palermo, L., Sabatini, U., Trojano, L., & Guariglia, C. (2014). The brain network for self-feeling: A symptom-lesion mapping study. Neuropsychologia, 63, 9298.CrossRefGoogle Scholar
Gu, X., Hof, P. R., Friston, K. J., & Fan, J. (2013). Anterior insular cortex and emotional awareness. Journal of Comparative Neurology, 521(15), 33713388.CrossRefGoogle ScholarPubMed
Haustein, M., Thomas, E. B. K., Scheer, K., & Denburg, N. L. (2023). Interoception, affect, and cognition in older adults. Experimental Aging Research, 50(3), 117.Google ScholarPubMed
Herbert, B. M., & Pollatos, O. (2012). The body in the mind: On the relationship between interoception and embodiment. Topics in Cognitive Science, 4(4), 692704.CrossRefGoogle ScholarPubMed
Hobson, H., Hogeveen, J., Brewer, R., Catmur, C., Gordon, B., Krueger, F., Chau, A., Bird, G., & Grafman, J. (2018). Language and alexithymia: Evidence for the role of the inferior frontal gyrus in acquired alexithymia. Neuropsychologia, 111, 229240.CrossRefGoogle ScholarPubMed
Hogeveen, J., Bird, G., Chau, A., Krueger, F., & Grafman, J. (2016). Acquired alexithymia following damage to the anterior insula. Neuropsychologia, 82, 142148.CrossRefGoogle Scholar
Hung, T.-H., Chou, S.-Y., & Su, J.-A. (2015). The role of Alexithymia in the incidence of poststroke depression. Journal of Nervous & Mental Disease, 203(12), 966970.CrossRefGoogle ScholarPubMed
Hynes, C. A., Stone, V. E., & Kelso, L. A. (2011). Social and emotional competence in traumatic brain injury: New and established assessment tools. Social Neuroscience, 6(5–6), 599614.CrossRefGoogle ScholarPubMed
Ibáñez, A., & García, A. M. (2018). Context as a determinant of interpersonal processes: The social context network model. In Ibáñez, A., & García, A. M. (Eds.) (Éds.), Contextual Cognition (pp. 727). Springer International Publishing, https://doi.org/10.1007/978-3-319-77285-1_2 Google Scholar
Iverson, G. L., Lange, R. T., Brooks, B. L., & Rennison, V. L. (2010). Good old days bias following mild traumatic brain injury. Clinical Neuropsychologist, 24(1), 1737.CrossRefGoogle ScholarPubMed
Jackson, A. S., Stanforth, P. R., Gagnon, J., Rankinen, T., Leon, A. S., Rao, D. C., Skinner, J. S., Bouchard, C., & Wilmore, J. H. (2002). The effect of sex, age and race on estimating percentage body fat from body mass index: The heritage family study. International Journal of Obesity, 26(6), 789796.CrossRefGoogle ScholarPubMed
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., & Zucker, N. (2018). Interoception and mental health: A roadmap. Biological psychiatry: cognitive neuroscience and neuroimaging, 3(6), 501513.Google ScholarPubMed
Khalsa, S. S., & Lapidus, R. C. (2016). Can interoception improve the pragmatic search for biomarkers in psychiatry? Frontiers in psychiatry, 7, 121.CrossRefGoogle ScholarPubMed
Khalsa, S. S., Rudrauf, D., & Tranel, D. (2009). Interoceptive awareness declines with age. Psychophysiology, 46(6), 11301136.CrossRefGoogle ScholarPubMed
Kleint, N. I., Wittchen, H.-U., Lueken, U., & Bodurka, J. (2015). Probing the interoceptive network by listening to heartbeats: An fMRI study. PLOS ONE, 10(7), e0133164.CrossRefGoogle ScholarPubMed
Kunz, A., Dirnagl, U., & Mergenthaler, P. (2010). Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Practice & Research Clinical Anaesthesiology, 24(4), 495509.CrossRefGoogle ScholarPubMed
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213.CrossRefGoogle ScholarPubMed
Lee, Y., Walsh, R. J., Fong, M. W. M., Sykora, M., Doering, M. M., & Wong, A. W. K. (2021). Heart rate variability as a biomarker of functional outcomes in persons with acquired brain injury: Systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 131, 737754.CrossRefGoogle ScholarPubMed
Leszczyński, P., Pietras, T., & Mokros, Ł. (2021). Post-Stroke alexithymia – a review. Advances in Psychiatry and Neurology/Postępy Psychiatrii i Neurologii, 30(3), 190–196. https://doi.org/10.5114/ppn.2021.110679 Google ScholarPubMed
Lydon, S., Healy, O., Reed, P., Mulhern, T., Hughes, B. M., & Goodwin, M. S. (2016). A systematic review of physiological reactivity to stimuli in autism. Developmental Neurorehabilitation, 19(6), 335355.CrossRefGoogle ScholarPubMed
Ma-Kellams, C., Prentice, F., Spooner, R., & Murphy, J. (2024). Demographic Differences in Interoception. In Murphy, J., & Brewer, R. (Eds.), Interoception: A Comprehensive Guide (pp. 357403). Springer International Publishing, https://doi.org/10.1007/978-3-031-68521-7_11 CrossRefGoogle Scholar
Martins, A. T., Faísca, L., Esteves, F., Muresan, A., Justo, M. G., Simão, C., & Reis, A. (2011). Traumatic brain injury patients: Does frontal brain lesion influence basic emotion recognition? Psychology and Neuroscience, 4(3), 377384.CrossRefGoogle Scholar
Mather, M., & Thayer, J. F. (2018). How heart rate variability affects emotion regulation brain networks. Current Opinion in Behavioral Sciences, 19, 98104.CrossRefGoogle ScholarPubMed
Matthias, E., Schandry, R., Duschek, S., & Pollatos, O. (2009). On the relationship between interoceptive awareness and the attentional processing of visual stimuli. International Journal of Psychophysiology, 72(2), 154159.CrossRefGoogle ScholarPubMed
Mehling, W. E., Acree, M., Stewart, A., Silas, J., & Jones, A. (2018). The multidimensional assessment of interoceptive awareness version 2 (MAIA-2). PLOS ONE, 13, e0208034https://doi.org/10.1371/journal.pone.0208034 CrossRefGoogle ScholarPubMed
Melloni, M., Sedeño, L., Couto, B., Reynoso, M., Gelormini, C., Favaloro, R., Canales-Johnson, A., Sigman, M., Manes, F., & Ibanez, A. (2013). Preliminary evidence about the effects of meditation on interoceptive sensitivity and social cognition. Behavioral and Brain Functions, 9(1), 47. doi: 10.1186/1744-9081-9-47.CrossRefGoogle ScholarPubMed
Milders, M. (2019). Relationship between social cognition and social behaviour following traumatic brain injury. Brain Injury, 33(1), 6268. doi: 10.1080/02699052.2018.1531301.CrossRefGoogle ScholarPubMed
Murphy, J., Brewer, R., Hobson, H., Catmur, C., & Bird, G. (2018). Is alexithymia characterised by impaired interoception? Further evidence, the importance of control variables, and the problems with the heartbeat counting task. Biological Psychology, 136, 189197.CrossRefGoogle ScholarPubMed
Murphy, J. M., Bennett, J. M., de la Piedad Garcia, X., & Willis, M. L. (2022). Emotion recognition and traumatic brain injury: A systematic review and meta-analysis. Neuropsychology Review, 32(3), 520536. doi: 10.1007/s11065-021-09510-7.CrossRefGoogle ScholarPubMed
Nauta, W. J. H. (1972). The problem of the frontal lobe: A reinterpretation. In Brady, J. V., & Nauta, W. J. H. (Eds.), Principles, practices, and positions in neuropsychiatric research (pp. 167187). Pergamon. https://doi.org/10.1016/B978-0-08-017007-7.50007-0 CrossRefGoogle Scholar
Neumann, D., Hammond, F. M., Sander, A. M., Bogner, J., Bushnik, T., Finn, J. A., Chung, J. S., Klyce, D. W., Sevigny, M., & Ketchum, J. M. (2024a). Alexithymia prevalence, characterization, and associations with emotional functioning and life satisfaction: A traumatic brain injury model system study. The Journal of Head Trauma Rehabilitation, 40(2), E175–E184.Google ScholarPubMed
Neumann, D., Hammond, F. M., Sander, A. M., Bogner, J., Bushnik, T., Finn, J. A., Chung, J. S., Klyce, D. W., Sevigny, M., & Ketchum, J. M. (2024b). Longitudinal investigation of alexithymia as a predictor of empathy, emotional functioning, resilience, and life Satisfaction 2 Years after brain injury. Archives of Physical Medicine and Rehabilitation, 105(8), 15291535.CrossRefGoogle ScholarPubMed
Neumann, D., Malec, J. F., & Hammond, F. M. (2017). Reductions in alexithymia and emotion dysregulation after training emotional self-awareness following traumatic brain injury: A phase I trial. Journal of Head Trauma Rehabilitation, 32(5), 286295.CrossRefGoogle ScholarPubMed
Nord, C. L., & Garfinkel, S. N. (2022). Interoceptive pathways to understand and treat mental health conditions. Trends in Cognitive Sciences, 26(6), 499513.CrossRefGoogle ScholarPubMed
Omar, R., Henley, S. M. D., Bartlett, J. W., Hailstone, J. C., Gordon, E., Sauter, D. A., Frost, C., Scott, S. K., & Warren, J. D. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56(3), 18141821.CrossRefGoogle ScholarPubMed
Payne, P., & Crane-Godreau, M. A. (2013). Meditative movement for depression and anxiety. Frontiers in Psychiatry, 4, 71, https://www.frontiersin.org/articles/10.3389/fpsyt.2013.00071 CrossRefGoogle ScholarPubMed
Pertz, M., Okoniewski, A., Schlegel, U., & Thoma, P. (2020). Impairment of sociocognitive functions in patients with brain tumours. Neuroscience & Biobehavioral Reviews, 108, 370392.CrossRefGoogle ScholarPubMed
Poppa, T., & Bechara, A. (2018). The somatic marker hypothesis: Revisiting the role of the ‘body-loop’ in decision-making. Current Opinion in Behavioral Sciences, 19, 6166.CrossRefGoogle Scholar
Prentice, F., Hobson, H., Spooner, R., & Murphy, J. (2022). Gender differences in interoceptive accuracy and emotional ability : An explanation for incompatible findings. Neuroscience & Biobehavioral Reviews, 141, 104808.CrossRefGoogle ScholarPubMed
Quadt, L., Critchley, H. D., & Garfinkel, S. N. (2018). The neurobiology of interoception in health and disease. Annals of the New York Academy of Sciences, 1428(1), 112128.CrossRefGoogle ScholarPubMed
Ricciardi, L., Demartini, B., Fotopoulou, A., & Edwards, M. J. (2015). Alexithymia in neurological disease: A review. Journal of Neuropsychiatry and Clinical Neurosciences, 27(3), 179187.CrossRefGoogle ScholarPubMed
Rushby, S. M., Honan, C., Kelly, M., & Lindsey Byom, J. (2013). Disorders of social cognition and social behaviour following severe TBI. In Social and communication disorders following traumatic brain injury (2e éd.). Psychology Press.Google Scholar
Schachter, S., & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69(5), 379399.CrossRefGoogle ScholarPubMed
Schandry, R. (1981). Heart beat perception and emotional experience. Psychophysiology, 18(4), 483488.CrossRefGoogle ScholarPubMed
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565573.CrossRefGoogle ScholarPubMed
Shah, P., Hall, R., Catmur, C., & Bird, G. (2016). Alexithymia, not autism, is associated with impaired interoception. Cortex, 81, 215220.CrossRefGoogle Scholar
Shephard, R. J., & Miller, H. S. (1998). Exercise and the health in health and disease (2nd ed.). New York: CRC Press (Eds.).Google Scholar
Spalletta, G., Pasini, A., Costa, A., De Angelis, D., Ramundo, N., Paolucci, S., & Caltagirone, C. (2001). Alexithymic features in stroke: Effects of laterality and gender. Psychosomatic Medicine, 63(6), 944.CrossRefGoogle ScholarPubMed
Stuss, D. T. (2011). Traumatic brain injury: Relation to executive dysfunction and the frontal lobes. Current Opinion in Neurology, 24(6), 584589.CrossRefGoogle ScholarPubMed
Sugawara, A., Katsunuma, R., Terasawa, Y., & Sekiguchi, A. (2024). Interoceptive training impacts the neural circuit of the anterior insula cortex. Translational Psychiatry, 14(1), 17.CrossRefGoogle ScholarPubMed
Talbert, L. D., Kaelberer, Z., Gleave, E., Driggs, A., Driggs, A. S., Steffen, P. R., Baldwin, S. A., & Larson, M. J. (2023). A systematic review of heart rate variability (HRV) biofeedback treatment following traumatic brain injury (TBI). Brain Injury, 37(7), 635642.CrossRefGoogle ScholarPubMed
Terasawa, Y., Fukushima, H., & Umeda, S. (2013). How does interoceptive awareness interact with the subjective experience of emotion? An fMRI study. Human Brain Mapping, 34(3), 598612.CrossRefGoogle ScholarPubMed
Terasawa, Y., Moriguchi, Y., Tochizawa, S., & Umeda, S. (2014). Interoceptive sensitivity predicts sensitivity to the emotions of others. Cognition and Emotion, 28(8), 14351448.CrossRefGoogle Scholar
Viskontas, I. V., Possin, K. L., & Miller, B. L. (2007). Symptoms of frontotemporal dementia provide insights into orbitofrontal cortex function and social behavior. Annals of the New York Academy of Sciences, 1121(1), 528545.CrossRefGoogle ScholarPubMed
Webster, K. E., & Colrain, I. M. (2000). The relationship between respiratory-related evoked potentials and the perception of inspiratory resistive loads. Psychophysiology, 37(6), 831841.CrossRefGoogle ScholarPubMed
Weng, H. Y., Feldman, J. L., Leggio, L., Napadow, V., Park, J., & Price, C. J. (2021). Interventions and manipulations of interoception. Trends in Neurosciences, 44(1), 5262.CrossRefGoogle ScholarPubMed
Whitehead, W. E., Drescher, V. M., Heiman, P., & Blackwell, B. (1977). Relation of heart rate control to heartbeat perception. Biofeedback and Self-Regulation, 2(4), 317392.CrossRefGoogle ScholarPubMed
Williams, C., Wood, R. L., & Howe, H. (2019). Alexithymia is associated with aggressive tendencies following traumatic brain injury. Brain Injury, 33(1), 6977.CrossRefGoogle Scholar
Willis, M. L., Palermo, R., McGrillen, K., & Miller, L. (2014). The nature of facial expression recognition deficits following orbitofrontal cortex damage. Neuropsychology, 28(4), 613623.CrossRefGoogle ScholarPubMed
Yoris, A., García, A. M., Salamone, P., Sedeno, L., García-Cordero, I., & Ibanez, A. (2018). Cardiac interoception in neurological conditions and its relevance for dimensional approaches. The interoceptive mind. From homeostasis to awareness. Oxford University Press, (pp. 187211).Google Scholar
Zhao, W., Martin, A. D., & Davenport, P. W. (2002). Detection of inspiratory resistive loads in double-lung transplant recipients. Journal of Applied Physiology, 93(5), 17791785.CrossRefGoogle ScholarPubMed
Zhen, Z., Fang, H., & Liu, J. (2013). The hierarchical brain network for face recognition. PLOS ONE, 8(3), e59886.CrossRefGoogle Scholar