Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-29T10:55:03.931Z Has data issue: false hasContentIssue false

KRONECKER COEFFICIENTS FOR (DUAL) SYMMETRIC INVERSE SEMIGROUPS

Published online by Cambridge University Press:  13 September 2024

VOLODYMYR MAZORCHUK
Affiliation:
Department of Mathematics, Uppsala University, Box. 480, SE-75106 Uppsala, Sweden e-mail: [email protected]
SHRADDHA SRIVASTAVA*
Affiliation:
Department of Mathematics, Indian Institute of Technology, Dharwad, Karnataka 580007, India

Abstract

We study analogues of Kronecker coefficients for symmetric inverse semigroups, for dual symmetric inverse semigroups and for the inverse semigroups of bijections between subquotients of finite sets. In all cases, we reduce the problem of determination of such coefficients to some group-theoretic and combinatorial problems. For symmetric inverse semigroups, we provide an explicit formula in terms of the classical Kronecker and Littlewood–Richardson coefficients for symmetric groups.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Communicated by James East

The first author is partially supported by the Swedish Research Council. The second author was supported by DST INSPIRE faculty fellowship ref. no. DST/INSPIRE/04/2021/000268.

References

Bowman, C., De Visscher, M. and Orellana, R., ‘The partition algebra and the Kronecker coefficients’, Trans. Amer. Math. Soc. 367(5) (2015), 36473667.CrossRefGoogle Scholar
Brundan, J. and Vargas, M., ‘A new approach to the representation theory of the partition category’, J. Algebra 601 (2022), 198279.CrossRefGoogle Scholar
Church, T., Ellenberg, J. and Farb, B., ‘FI-modules and stability for representations of symmetric groups’, Duke Math. J. 164(9) (2015), 18331910.CrossRefGoogle Scholar
Fitzgerald, D. and Leech, J., ‘Dual symmetric inverse monoids and representation theory’, J. Aust. Math. Soc. Ser. A 64(3) (1998), 345367.CrossRefGoogle Scholar
Ganyushkin, O. and Mazorchuk, V., Classical Finite Transformation Semigroups. An Introduction, Algebra and Applications, 9 (Springer-Verlag, London, 2009), xii+314 pages.CrossRefGoogle Scholar
Halverson, T. and Ram, A., ‘Partition algebras’, European J. Combin. 26(6) (2005), 869921.CrossRefGoogle Scholar
James, G. and Kerber, A., The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and Its Applications, 16 (Cambridge University Press, Cambridge, 2009).Google Scholar
Jones, V., ‘The Potts model and the symmetric group’, in: Subfactors (Kyuzeso, 1993) (eds. H. Araki, Y. Kawahigashi and H. Kosaki) (World Scientific Publishing, River Edge, NJ, 1994), 259267.Google Scholar
Jonsson, H., Mazorchuk, V., Persson Westin, H., Srivastava, S., Stroinski, M. and Zhu, X., ‘Finite quotients of singular Artin monoids and categorification of the desingularization map’, J. Korean Math. Soc. 60(6) (2023), 12551302.Google Scholar
Kudryavtseva, G. and Maltcev, V., ‘Two generalisations of the symmetric inverse semigroups’, Publ. Math. Debrecen 78(2) (2011), 253282.CrossRefGoogle Scholar
Kudryavtseva, G. and Mazorchuk, V., ‘Partialization of categories and inverse braid-permutation monoids’, Internat. J. Algebra Comput. 18(6) (2008), 9891017.CrossRefGoogle Scholar
Kudryavtseva, G. and Mazorchuk, V., ‘Schur–Weyl dualities for symmetric inverse semigroups’, J. Pure Appl. Algebra 212(8) (2008), 19871995.CrossRefGoogle Scholar
Lawson, M., ‘Primer on inverse semigroups I’, Preprint, 2020, arXiv:2006.01628.Google Scholar
Martin, P., ‘Temperley–Lieb algebras for nonplanar statistical mechanics – the partition algebra construction’, J. Knot Theory Ramifications 3(1) (1994), 5182.CrossRefGoogle Scholar
Martin, P. and Saleur, H., ‘Algebras in higher-dimensional statistical mechanics – the exceptional partition (mean field) algebras’, Lett. Math. Phys. 30(3) (1994), 179185.CrossRefGoogle Scholar
Mazorchuk, V., ‘Simple modules over factorpowers’, Acta Sci. Math. (Szeged) 75(3–4) (2009), 467485.Google Scholar
Mazorchuk, V. and Srivastava, S., ‘Multiparameter colored partition category and the product of the reduced Kronecker coefficients’, J. Pure Appl. Algebra 228(3) (2024), Paper no. 107524.CrossRefGoogle Scholar
Mishra, A. and Srivastava, S., ‘Jucys–Murphy elements of partition algebras for the rook monoid’, Internat. J. Algebra Comput. 31(5) (2021), 831864.CrossRefGoogle Scholar
Martin, P. and Woodcock, D., ‘On central idempotents in the partition algebra’, J. Algebra 217(1) (1999), 156169.CrossRefGoogle Scholar
Ryba, C., ‘Kronecker comultiplication of stable characters and restriction from ${S}_{mn}$ to ${S}_m\times {S}_n$ ’, J. Algebra. 638 (2024), 720738.CrossRefGoogle Scholar
Sagan, B., The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn, Graduate Texts in Mathematics, 203 (Springer-Verlag, New York, 2001), xvi+238 pages.Google Scholar
Steinberg, B., Representation Theory of Finite Monoids, Universitext, 1 (Springer, Cham, 2016), xxiv+317 pages.CrossRefGoogle Scholar