Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-26T02:33:00.122Z Has data issue: false hasContentIssue false

BOUNDEDNESS OF DIFFERENTIAL TRANSFORMS FOR FRACTIONAL HEAT SEMIGROUPS GENERATED BY SCHRÖDINGER OPERATORS

Published online by Cambridge University Press:  25 November 2024

PENGTAO LI
Affiliation:
School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China e-mail: [email protected]
YU LIU*
Affiliation:
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
ZHIYONG WANG
Affiliation:
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China e-mail: [email protected]

Abstract

Let $L=-\Delta +V$ be a Schrödinger operator in ${\mathbb R}^n$ with $n\geq 3$, where $\Delta $ is the Laplace operator denoted by $\Delta =\sum ^{n}_{i=1}({\partial ^{2}}/{\partial x_{i}^{2}})$ and the nonnegative potential V belongs to the reverse Hölder class $(RH)_{q}$ with $q>n/2$. For $\alpha \in (0,1)$, we define the operator

$$ \begin{align*} T_N^{L^{\alpha}} f(x) =\sum_{j=N_1}^{N_2} v_j(e^{-a_{j+1}L^\alpha} f(x)-e^{-a_{j}L^\alpha} f(x)) \quad \mbox{for all }x\in \mathbb R^n, \end{align*} $$

where $\{e^{-tL^\alpha } \}_{t>0}$ is the fractional heat semigroup of the operator L, $\{v_j\}_{j\in \mathbb Z}$ is a bounded real sequence and $\{a_j\}_{j\in \mathbb Z}$ is an increasing real sequence.

We investigate the boundedness of the operator $T_N^{L^{\alpha }}$ and the related maximal operator $T^*_{L^{\alpha }}f(x):=\sup _N \vert T_N^{L^{\alpha }} f(x)\vert $ on the spaces $L^{p}(\mathbb {R}^{n})$ and $BMO_{L}(\mathbb {R}^{n})$, respectively. As extensions of $L^{p}(\mathbb {R}^{n})$, the boundedness of the operators $T_N^{L^{\alpha }}$ and $T^*_{L^{\alpha }}$ on the Morrey space $L^{\rho ,\theta }_{p,\kappa }(\mathbb {R}^{n})$ and the weak Morrey space $WL^{\rho ,\theta }_{1,\kappa }(\mathbb {R}^{n})$ has also been proved.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

P.T. Li was supported by National Natural Science Foundation of China under grants (No. 12471093) and Shandong Natural Science Foundation of China (No. ZR2024MA016). Y. Liu was supported by National Natural Science Foundation of China (No. 12471089, No. 12271042), Beijing Natural Science Foundation of China (No. 1232023) and the National Science and Technology Major Project of China (No. J2019-I-0019-0018, No. J2019-I-0001-0001).

Communicated by Ji Li

References

Adams, D. and Xiao, J., ‘Nonlinear potential analysis on Morrey spaces and their capacities’, Indiana Univ. Math. J. 53 (2004), 16291663.CrossRefGoogle Scholar
Adams, D. and Xiao, J., ‘Morrey spaces in harmonic analysis’, Ark. Mat. 50 (2012), 201230.CrossRefGoogle Scholar
Bernardis, A., Lorente, M., Martín-Reyes, F., Martínez, M., Torre, A. and Torrea, J., ‘Differential transforms in weighted spaces’, J. Fourier Anal. Appl. 12 (2006), 83103.CrossRefGoogle Scholar
Duoandikoetxea, J., Fourier Analysis: Translated and Revised from the 1995 Spanish Original by David Cruz-Uribe, Graduate Studies in Mathematics, 29 (American Mathematical Society, Providence, RI, 2001).Google Scholar
Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. and Zienkiewicz, J., ‘BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality’, Math. Z. 249 (2005), 329356.CrossRefGoogle Scholar
Ferrari, F., Miranda, M. Jr, Pallara, D., Pinamonti, A. and Sire, Y., ‘Fractional Laplacians, perimeters and heat semigroups in Carnot groups’, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), 477491.Google Scholar
Grafakos, L., Classical and Modern Fourier Analysis (Pearson Education, Inc., Upper Saddle River, NJ, 2004).Google Scholar
Guliyev, V., Eroglu, A. and Mammadov, Y., ‘Riesz potential in generalized Morrey spaces on the Heisenberg group’, J. Math. Sci. (N.Y.) 189 (2013), 365382.CrossRefGoogle Scholar
Jones, R. and Rosenblatt, J., ‘Differential and ergodic transforms’, Math. Ann. 323 (2002), 525546.CrossRefGoogle Scholar
Li, P., Wang, Z., Qian, T. and Zhang, C., ‘Regularity of fractional heat semigroup associated with Schrödinger operators’, Fractal Fract. 6 (2022), 112.CrossRefGoogle Scholar
Ma, T., Stinga, P., Torrea, J. and Zhang, C., ‘Regularity estimates in Hölder spaces for Schrödinger operators via a $T1$ theorem’, Ann. Mat. Pura Appl. (4) 193 (2014), 561589.Google Scholar
Miao, C., Yuan, B. and Zhang, B., ‘Well-posedness of the Cauchy problem for the fractional power dissipative equations’, Nonlinear Anal. 68 (2008), 461484.CrossRefGoogle Scholar
Morrey, C., ‘On the solutions of quasi-linear elliptic partial differential equations’, Trans. Amer. Math. Soc. 43 (1983), 126166.CrossRefGoogle Scholar
Pan, G. and Tang, L., ‘Boundedness for some Schrödinger type operators on weighted Morrey spaces’, J. Funct. Spaces 2014 (2014), Article ID 878629, 10 pages.Google Scholar
Shen, Z., ‘ ${L}^p$ estimates for Schrödinger operators with certain potentials’, Ann. Inst. Fourier (Grenoble) 45 (1995), 513546.CrossRefGoogle Scholar
Tang, L. and Dong, J., ‘Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials’, J. Math. Anal. Appl. 355 (2009), 101109.CrossRefGoogle Scholar
Taylor, M., ‘Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations’, Comm. Partial Differential Equations 17 (1992), 14071456.CrossRefGoogle Scholar
Wang, Z., Li, P. and Zhang, C., ‘Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via $T1$ theorem’, Banach J. Math. Anal. 15(4) (2021), Article no. 64, 37 pages.Google Scholar
Zhang, C., Ma, T. and Torrea, J., ‘Boundedness of differential transforms for one-sided fractional Poisson-type operator sequence’, J. Geom. Anal. 31 (2021), 6799.Google Scholar
Zhang, C. and Torrea, J., ‘Boundedness of differential transforms for heat semigroups generated by Schrödinger operators’, Canad. J. Math. 73 (2021), 622655.Google Scholar