Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-30T00:32:59.165Z Has data issue: false hasContentIssue false

Nonlinear dynamics in dusty plasmas subjected to photo-discharging

Published online by Cambridge University Press:  19 December 2024

Michael McKinlay*
Affiliation:
Department of Physics and Astronomy, Ball State University, Muncie, IN 47306, USA
Edward Thomas Jr
Affiliation:
Physics Department, Auburn University, Auburn, AL 39849, USA
Saikat Chakraborty Thakur
Affiliation:
Physics Department, Auburn University, Auburn, AL 39849, USA
*
Email address for correspondence: [email protected]

Abstract

Experimental research into the control of particle charge in dusty plasmas conducted at Auburn University indicates that photocurrents generated by exposing dust to intense, near-ultraviolet light can provide a reliable and novel method of independently controlling dust charge without radically altering the background plasma; the experiment also showed that some particles may respond differently to this photo-discharge, with some exhibiting highly periodic responses to the discharge and others exhibiting chaotic behaviour. Since the dust particles in the experiment were a polydisperse sample of different sizes and shapes, particle geometry may play a role in explaining this difference. Simulations of particle discharge and dynamics are used in an attempt to reproduce experimental results and investigate a possible correlation between particle symmetry and dynamic periodicity.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Barkan, A., Merlino, R.L. & D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2 (10), 35633565.CrossRefGoogle Scholar
Fisher, R. & Thomas, E. 2010 Thermal properties of a dusty plasma in the presence of driven dust acoustic waves. IEEE Trans. Plasma Sci. 38 (4), 833837.CrossRefGoogle Scholar
Goree, J., Morfill, G.E., Tsytovich, V.N. & Vladimirov, S.V. 1999 Theory of dust voids in plasmas. Phys. Rev. E 59 (6), 70557067.CrossRefGoogle ScholarPubMed
Hall, T., Thomas, E., Avinash, K., Merlino, R. & Rosenberg, M. 2018 Methods for the characterization of imposed, ordered structures in MDPX. Phys. Plasmas 25 (10), 103702.CrossRefGoogle Scholar
Hall, T.H. & Thomas, E. 2016 A study of ion drag for ground and microgravity dusty plasma experiments. IEEE Trans. Plasma Sci. 44 (4), 463468.CrossRefGoogle Scholar
Horányi, M. 2004 Dusty plasma effects in saturns magnetosphere. Rev. Geophys. 42 (4).CrossRefGoogle Scholar
Hutchinson, I.H. 2003 Ion collection by a sphere in a flowing plasma: 2. Non-zero debye length. Plasma Phys. Control. Fusion 45 (8), 14771500.CrossRefGoogle Scholar
Hutchinson, I.H. 2004 Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force. Plasma Phys. Control. Fusion 47 (1), 7187.CrossRefGoogle Scholar
Hutchinson, I.H. 2006 Collisionless ion drag force on a spherical grain. Plasma Phys. Control. Fusion 48 (2), 185202.CrossRefGoogle Scholar
Khrapak, S.A., Ivlev, A.V., Morfill, G.E. & Thomas, H.M. 2002 Ion drag force in complex plasmas. Phys. Rev. E 66 (4).CrossRefGoogle ScholarPubMed
Lynch, B., Konopka, U. & Thomas, E. 2016 Real-time particle tracking in complex plasmas. IEEE Trans. Plasma Sci. 44 (4), 553557.CrossRefGoogle Scholar
McKinlay, M. & Thomas, E. 2021 Controlled photo-discharge of dust in a complex plasma. J. Plasma Phys. 87 (2).CrossRefGoogle Scholar
Morooka, M.W., Wahlund, J. -E., Eriksson, A.I., Farrell, W.M., Gurnett, D.A., Kurth, W.S., Persoon, A.M., Shafiq, M., André, M., Holmberg, M.K.G., et al. 2011 Dusty plasma in the vicinity of Enceladus. J. Geophys. Res. 116 (A12).Google Scholar
Rubel, M., Widdowson, A., Grzonka, J., Fortuna-Zalesna, E., Moon, S., Petersson, P., Ashikawa, N., Asakura, N., Hamaguchi, D., Hatano, Y., et al. 2018 Dust generation in tokamaks: overview of beryllium and tungsten dust characterisation in JET with the ITER-like wall. Fusion Engng Des. 136, 579586.CrossRefGoogle Scholar
Shukla, P.K. & Mamun, A.A. 2002 Introduction to Dusty Plasma Physics. Institute of Physics.CrossRefGoogle Scholar
Thomas, E. 1999 Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 6 (7), 26722675.CrossRefGoogle Scholar
Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B. & Möhlmann, D. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73 (5), 652655.CrossRefGoogle Scholar
Thomas, H.M. & Morfill, G.E. 1996 Melting dynamics of a plasma crystal. Nature 379 (6568), 806809.CrossRefGoogle Scholar
Torgasin, K., Morita, K., Zen, H., Masuda, K., Katsurayama, T., Murata, T., Suphakul, S., Yamashita, H., Nogi, T., Kii, T., et al. 2017 Thermally assisted photoemission effect on CeB6 and LaB6 for application as photocathodes. Phys. Rev. Accel. Beams 20 (7).CrossRefGoogle Scholar
Watanabe, Y. 1997 Dust phenomena in processing plasmas. Plasma Phys. Control. Fusion 39 (5A).CrossRefGoogle Scholar
Wong, C.-S., Goree, J., Haralson, Z. & Liu, B. 2017 Strongly coupled plasmas obey the fluctuation theorem for entropy production. Nat. Phys. 14 (1), 2124.CrossRefGoogle Scholar
Zappalá, V. 1980 Peculiar shapes of asteroids: implications for light curves and periods of rotation. Moon Planets 23 (3), 345353.CrossRefGoogle Scholar