Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-25T23:21:20.043Z Has data issue: false hasContentIssue false

Morphometric analyses of Gnathodus pseudosemiglaber (Conodonta, Mississippian) and implications for its taxonomy, phylogeny and biostratigraphy

Published online by Cambridge University Press:  17 April 2025

Wenqi Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
Keyi Hu*
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
Nicholas J. Hogancamp
Affiliation:
The Bedrock and Earth History Research Organization, Pennsylvania, USA Earth Sciences Department, Binghamton University, Binghamton, NY, 13902, USA
Xiangdong Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
*
Corresponding author: Keyi Hu; Email: [email protected]

Abstract

Gnathodus pseudosemiglaber is an important conodont species for Lower Mississippian biostratigraphy, but differentiating it from morphologically similar species remains difficult due to uncertainties in the intraspecific, ontogenetic, and phylogenetic relationships between taxa. To clarify these uncertainties, a fauna from the Yudong Formation at the Yudong II section in Baoshan, southwestern China, that contains abundant G. pseudosemiglaber was analyzed using population thinking. Quantitative morphometric methods were employed to analyze G. pseudosemiglaber specimens. Six anatomical measurements were taken on specimens of different ontogenetic stages to conduct analyses on normal distribution, correlation, and regression. A geometric morphometric analysis based on 13 landmarks was also performed. The results demonstrated that all analyzed specimens belonged to a single population. The dorsal carina of G. pseudosemiglaber has a growth rate that far exceeds other features on the platform through ontogeny as well as exhibits a series of transverse ridges in adult individuals, which becomes the most prominent diagnostic characteristic of this species. Thus, an amended systematic description for G. pseudosemiglaber is presented. Gnathodus girtyi maxwelli, a previously named species, however, is regarded as a junior synonym of G. pseudosemiglaber. Based on the revised taxonomy of G. pseudosemiglaber, its possible phylogenetic lineages and biostratigraphic use were reviewed. The ancestor of G. pseudosemiglaber is probably G. semiglaber but its descendant is unknown. The range of G. pseudosemiglaber is from the Scaliognathus anchoralisDoliognathus latus Zone of uppermost Tournaisian to the lower part of the G. bilineatus Zone of middle-upper Visean.

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Handling Editor: Stephen Leslie

References

Ahmadi, T., Dastanpour, M., Vaziri, M.R., and Bahrami, A., 2016, Biostratigraphy and paleoecology of Lower Carboniferous strata in Hutk section (Kerman) based on conodonts: Scientific Semiannual Journal Sedimentary Facies, v. 9, p. 112. [in Persian with English abstract]Google Scholar
Aldridge, R.J., 1987, Conodont palaeobiology: a historical review, in Aldridge, R.J., ed., Palaeobiology of Conodonts: Chichester, UK, Ellis Horwood, p. 1134.Google Scholar
Allmon, W.D., 2013., Species, speciation and palaeontology up to the Modern Synthesis: persistent themes and unanswered questions: Palaeontology, v. 56, p. 11991223.CrossRefGoogle Scholar
Austin, R.L., and Husri, S., 1974, Dinantian conodont faunas of County Clare, County Limerick and County Leitrim. An appendix, in Bouckaert, J., and Streel, M., eds., International Symposium on Belgian Micropaleontological Limits from Emsian to Viséan, Namur: Brussels, Geological Survey of Belgium, Publication 3, p. 1869.Google Scholar
Barrick, J.E., Alekseev, A.S., Blanco-Ferrera, S., Goreva, N.V., Hu, K.Y., Lambert, L.L., Nemyrovska, T.I., Qi, Y.P., Ritter, S.M., and Sanz-López, J., 2022, Carboniferous conodont biostratigraphy: Geological Society, London, Special Publications, v. 512, p. 695768.CrossRefGoogle Scholar
Bateson, W., 1886, The ancestry of the Chordata: Quarterly Journal of Microscopical Sciences, v. 26, p. 535571.Google Scholar
Belka, Z., 1985, Lower Carboniferous conodont biostratigraphy ln the northeastern part of the Moravia-Silesia Basin: Acta Geologica Polonica, v. 35, p. 3360.Google Scholar
Belka, Z., and Groessens, E., 1986, Conodont succession across the Tournaisian–Visean boundary beds at Salet, Belgium: Bulletin de la Société Belge de Géologie, v. 95, p. 257–80.Google Scholar
Bischoff, G., 1957, Die conodonten-stratigraphie des Rheno-Herzynischen Unterkarbons mit berucksichtigung der Wocklumeria-Stufe und der Devon/Karbon-grenze: Abhandlungen des Hessischen Landesamtes fur Bodenforschung, v. 19, p. 164.Google Scholar
Boardman, D.R., Thompson, T.L., Godwin, C., Mazzullo, S.J., Wilhite, B.W., and Morris, B.T., 2013, High-resolution conodont zonation for Kinderhookian (Middle Tournaisian) and Osagean (upper Tournaisian–lower Visean) strata of the western edge of the Ozark Plateau, North America: Shale Shaker, v. 64, p. 98151.Google Scholar
Boncheva, I., Bahrami, A., Yazdi, M., Toraby, H., 2007, Carboniferous conodont biostratigraphy and Late Paleozoic platform evolution in south central Iran (Asadabad Section in Ramsheh area – SE Isfahan): Rivista Italiana di Paleontologia e Stratigrafia, v. 113, p. 329356.Google Scholar
Bookstein, F.L., 1991, Morphometric Tools for Landmark Data: Geometry and Biology: Cambridge, UK, Cambridge University Press, 435 p.Google Scholar
Branson, E.B., 1938, Stratigraphy and paleontology of the Lower Mississippian of Missouri, Part 1: University of Missouri Studies, v. 13, 208 p.Google Scholar
Branson, E.B., and Mehl, M.G., 1934, Conodonts from the Bushberg Sandstone and equivalent formations of Missouri: Missouri University Studies, v. 8, p. 265299.Google Scholar
Branson, E.B., and Mehl, M.G., 1938, The conodont genus Icriodus and its stratigraphic distribution: Journal of Paleontology, v. 12, p. 156166.Google Scholar
Branson, E.B., and Mehl, M.G., 1941, New and little known Carboniferous conodont genera: Journal of Paleontology, v. 15, p. 97106.Google Scholar
Brenckle, P., Lane, H.R., and Collinson, C., 1974, Progress toward reconciliation of Lower Mississippian conodont and foraminiferal zonations: Geology, v. 2, p. 433436.Google Scholar
Cooper, C.L., 1939, Conodonts from a Bushberg–Hannibal horizon in Oklahoma: Journal of Paleontology, v. 13, p. 379422.Google Scholar
Dong, Z.Z., and Ji, Q., 1988, Carboniferous conodont biostratigraphy of Ninglang–Lijiang area, Yunnan Province: Professional Papers of Stratigraphy and Palaeontology, v. 22, p. 3565. [in Chinese with English abstract]Google Scholar
Donoghue, P.C.J., and Purnell, M.A., 1999, Mammal-like occlusion in conodonts: Paleobiology, v. 25, p. 5874.Google Scholar
Dvořák, L., 2007, [Konodotová fauna svrchního tournai a spodního visé v Mokré u Brna] [M.S. thesis]: Brno, Czech Republic, Přírodovědecká Fakulta Masarykovy Univerzity, 60 p. [in Czech with English abstract]Google Scholar
Dzik, J., 1976, Remarks on the evolution of Ordovician conodonts: Acta Palaeontologica Polonica, v. 21, p. 395455.Google Scholar
Dzik, J., 2006, The Famennian “Golden Age” of conodonts and ammonoids in the Polish part of the Variscan Sea: Palaeontologia Polonica, v. 63, p. 1360.Google Scholar
Ebner, F., 1977, Die Gliederung des Karbons von Graz mit Conodonten: Jährbuch Geologie, v. 120, p. 449493.Google Scholar
Epstein, A.G., Epstein, J.B., Harris, L.D., 1977, Conodont color alteration: an index to organic metamorphism: U.S. Geological Survey Professional Paper, v. 995, p. 127.Google Scholar
Fang, Z.J., and Rong, J.Y., 1991, Phena, morphospecies and biospecies—on discrimination of fossil species: Acta Palaeontologica Sinica, v. 30, p. 537555. [in Chinese with English abstract]Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: Paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Han, C., Orchard, M.J., Wu, S., Zhao, L., Chen, Z.Q., Golding, M.L., Jan, I.U., Lyu, Z., and Hashmi, S.I., 2022, Improved taxonomic definition based on the ontogenetic series of Griesbachian–Dienerian conodonts from the Early Triassic of northwestern Pakistan: Global and Planetary Change, v. 208, 103703, https://doi.org/10.1016/j.gloplacha.2021.103703.CrossRefGoogle Scholar
Hogancamp, N.J., 2020, P1 element morphological variability within the Late Pennsylvanian asymmetrical Idiognathodus clade from the Midcontinent, USA and implications for ontogeny, taxonomy, phylogeny, and function: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 549, 109090, https://doi.org/10.1016/j.palaeo.2019.02.016.CrossRefGoogle Scholar
Hu, K.Y., Qi, Y.P., Qie, W.K., and Wang, Q.L., 2020, Carboniferous conodont zonation of China: Newsletters on Stratigraphy, v. 53, p. 141190.CrossRefGoogle Scholar
Hu, K.Y., Qi, Y.P., Wang, Q.L., Wang, Z.H., and Wang, X.D., 2022, Progress of studies on Carboniferous conodonts in China: Acta Palaeontologica Sinica, v. 61, p. 371396. [in Chinese with English abstract]Google Scholar
Hu, K.Y., Wang, X.D., and Qi, Y.P., 2023, Biostratigraphy and biofacies of the Kasimovian conodonts from the Shanglong section, South China: Geological Society, London, Special Publications, v. 535, p. 409437, https://doi.org/10.1144/SP535-2022-173Google Scholar
Huang, H., 2011, Fusulinid species determination based on population variation: an example from Eopolydiexodina: Science China Earth Sciences, v. 54, p. 380387.CrossRefGoogle Scholar
Imbrie, J., 1956, Biometrical methods in the study of invertebrate fossils: Bulletin of the American Museum of Natural History, v. 108, p. 211252.Google Scholar
Jenkins, T.B.H., Crane, D.T., and Mory, A.J., 1993, Conodont biostratigraphy of the Visean Series in eastern Australia: Alcheringa, v. 17, p. 211283.Google Scholar
Lane, H.R., 1968, Symmetry in conodont element-pairs: Journal of Paleontology, v. 42, p. 12581263.Google Scholar
Lane, H.R., and Brenckle, P.L., 2005, Type Mississippian subdivisions and biostratigraphic succession, in Heckle, P.H., ed., Stratigraphy and Biostratigraphy of the Mississippian Subsystem (Carboniferous System) in its Type Region, the Mississippi River Valley of Illinois, Missouri, and Iowa: Champaign, Illinois State Geological Survey, Guidebook 34, p. 76–105Google Scholar
Lane, H.R., and Ziegler, Z., 1984, Proposal of Gnathodus bilineatus (Roundy, 1926) as type species of the genus Gnathodus Pander, 1856 (Conodonta): Senckenbergiana Lethaea, v. 65, p. 257263.Google Scholar
Lane, H.R., Sandberg, C.A., and Ziegler, W., 1980, Taxonomy and phylogeny of some Lower Carboniferous conodonts and preliminary standard post-Siphonodella zonation: Geologica et Palaeontologica, v. 14, p. 117164.Google Scholar
Mayr, E., 1994, Typological versus population thinking: conceptual issues in evolutionary biology, v. 3, p. 325328.Google Scholar
Mayr, E., 2000, The biological species concept, in Wheeler, Q.D., and Meier, R., eds., Species Concepts and Phylogenetic Theory: New York, Columbia University Press, p. 1729.Google Scholar
Mei, S.L., Henderson, C.M., and Cao, C.Q., 2004, Conodont sample-population approach to defining the base of the Changhsingian Stage, Lopingian Series, Upper Permian: Geological Society, London, Special Publications, v. 230, p. 105121.CrossRefGoogle Scholar
Mehl, M.G., and Thomas, L.A., 1947, Conodonts from the Fern Glen of Missouri: Denison University Bulletin, v. 40, p. 320.Google Scholar
Meischner, D., and Nemyrovska, T.I., 1998, Origin of Gnathodus bilineatus (Roundy, 1926) related to goniatite zonation in Rheinisches Schiefergebirge, Germany: Bollettino-Societa Paleontologica Italiana, v. 37, p. 427442.Google Scholar
Merrill, G.K., and Powell, R.J., 1980, Paleobiology of juvenile (nepionic?) conodonts from the Drum Limestone (Pennsylvanian, Missourian—Kansas City Area) and its bearing on apparatus ontogeny: Journal of Paleontology, v. 54, p. 10581074.Google Scholar
Metcalfe, I., 1980, Conodont faunas and age of the Raygill Quarry limestones (Embsay Limestone), Lothersdale, Yorkshire: Proceedings of the Yorkshire Geological Society, v. 43, p. 169178.CrossRefGoogle Scholar
Metcalfe, I., and Aung, K.P., 2014, Late Tournaisian conodonts from the Taungnyo Group near Loi Kaw, Myanmar (Burma): implications for Shan Plateau stratigraphy and evolution of the Gondwana-derived Sibumasu terrane: Gondwana Research, v. 26, p. 11591172.CrossRefGoogle Scholar
Munkhjargal, A., Königshof, P., Waters, J.A., Carmichael, S.K., Gonchigdorj, S., Thassanapak, H., Udchachon, M., and Davaanyam, S., 2021, The Mandalovoo–Gurvansayhan terranes in the southern Gobi of Mongolia: new insights from the Bayankhoshuu Ruins section: Palaeobiodiversity and Palaeoenvironments, v. 101, p. 755780.CrossRefGoogle Scholar
Nemyrovska, T.I., 2005, Late Visean/early Serpukhovian conodont succession from the Triollo section, Palencia (Cantabrian Mountains, Spain): Scripta Geologica, v. 129, p. 1389.Google Scholar
Nemyrovska, T.I., Perret-Mirouse, M.F., and Weyant, M., 2006, The early Viséan (Carboniferous) conodonts from the Saoura Valley, Algeria: Acta Geologica Polonica, v. 56, p. 361370.Google Scholar
Nestell, M.K., Wardlaw, B.R., and Pope, J.P., 2016, A well-preserved conodont fauna from the Pennsylvanian Excello Shale of Iowa, USA: Micropaleontology, v. 62, p. 93114.Google Scholar
Norby, R.D., 1976, Conodont apparatuses from Chesterian (Mississippian) strata of Montana and Illinois][Ph.D. dissertation]: Urbana-Champaign, Illinois, University of Illinois at Urbana-Champaign, 295 p.Google Scholar
Pander, C.H., 1856, Monographie der fossilen Fische des Siturischen Systems der Russisch Baltischen Gouvernements: Saint Peterburg, Kaiserlichen Akademie der Wissenschaften, 91 p.Google Scholar
Perret, M.F., Vachard, D., Aguirre, P., and Crasquin-Soleau, S., 1994, Micropaléontologie des calcaires épibathyaux à Globochaete (algue problèmatique) du Carbonifère des Pyrénées: Geobios, v. 27, p. 659675.Google Scholar
Perri, M.C., and Spalletta, C., 1998, Conodont distribution at the Tournaisian/Viséan boundary in the Carnic Alps (southern Alps, Italy): Palaeontologia Polonica, v. 58, p. 225245.Google Scholar
Pierce, R.W., and Langenheim, R.L. Jr. 1974, Platform conodonts of the Monte Cristo Group, Mississippian, Arrow Canyon Range, Clark County, Nevada: Journal of Paleontology, v. 48, p. 149169.Google Scholar
Purnell, M.A., 1993, The Kladognathus apparatus (Conodont, Carboniferous): homologies with ozarkodinids, and the prioniodinid bauplan: Journal of Paleontology, v. 67, p. 875882.CrossRefGoogle Scholar
Purnell, M.A., and Donoghue, P.C., 1997, Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, v. 352, p. 15451564.Google Scholar
Purnell, M.A., Donoghue, P.C.J., and Aldridge, R.J., 2000, Orientation and anatomical notation in conodonts: Journal of Paleontology, v. 74, p. 113122.2.0.CO;2>CrossRefGoogle Scholar
Qi, Y.P, Nemyrovska, T.I., Wang, X.D., Chen, J.T., Wang, Z.H., Lane, H.R., Hu, K.Y., and Wang, Q.L., 2014, Late Visean–early Serpukhovian conodont succession at the Naqing (Nashui) section in Guizhou, South China: Geological Magazine, v. 151, p. 254268.Google Scholar
Qiu, H.R., 1984, Paleozoic and Triassic conodont faunas in Xizang (Tibet), in Chinese Academy of Geological Sciences, ed., Sino-French Cooperative Investigation in Himalayas: Beijing, Geological Publishing House, p. 85113. [in Chinese with English abstract]Google Scholar
Renaud, S., Girard, C., and Dufour, A.B., 2021, Morphometric variance, evolutionary constraints and their change through time in Late Devonian Palmatolepis conodonts: Evolution, v. 75, p. 29112929.CrossRefGoogle ScholarPubMed
Rexroad, C.B., and Scott, A.J., 1964, Conodont zones in the Rockford Limestone and the lower part of the New Providence Shale (Mississippian) in Indiana: Indiana Geological & Water Survey, v. 30, p. 154.Google Scholar
Rhodes, F.H.T., 1952, A classification of Pennsylvanian conodont assemblages: Journal of Paleontology, v. 26, p. 886901.Google Scholar
Rohlf, F.J., 2006, TpsDig, program for digitizing landmarks and outlines for geometric morphometric analyses, version 2.32: Department of Ecology and Evolution, State University of New York at Stony Brook. https://sbmorphometrics.org/soft-dataacq.htmlGoogle Scholar
Roundy, P.V., 1926, The micro-fauna in Mississippian formations of San Saba County, Texas: US Geological Survey Professional Paper, v. 146, p. 517.Google Scholar
Sanz-López, J., and Blanco-Ferrera, S., 2018, Conodonts with high potential for correlation in the upper Tournaisian to middle Viséan (Mississippian) of the Cantabrian Mountains, Spain, in Over, D.J., and Henderson, C.M., eds., Conodont Studies Dedicated to the Careers and Contributions of Anita Harris, Glen Merrill, Carl Rexroad, Walter Sweet, and Bruce Wardlaw: Bulletins of American Paleontology, v. 395–396, p. 7187.CrossRefGoogle Scholar
Sanz-López, J., Blanco-Ferrera, S., and García López, S., 2004, Taxonomy and evolutionary significance of some “gnathodus” species (conodonts) from the Mississippian of the northern Iberian Peninsula: Revista Española de Micropaleontología, v. 36, p. 215230.Google Scholar
Sattari, E., Bahrami, A., Königshof, P., and Vaziri-Moghaddam, H., 2021, Late Devonian (Famennian) to Carboniferous (Mississippian–Pennsylvanian) conodonts from the Anarak section, central Iran: Palaeobiodiversity and Palaeoenvironments, v. 101, p. 781802.CrossRefGoogle Scholar
Schmidt, H., 1934, Conodonten-funde in ursprünglichem zusammenhang: Paläontologische Zeitschrift, v. 16, p. 7685.CrossRefGoogle Scholar
Shapiro, S.S., and Wilk, M.B., 1965, An analysis of variance test for normality (complete samples): Biometrika, v. 52, p. 591611, https://doi.org/10.2307/2333709Google Scholar
Simpson, G.G., 1940, Types in modern taxonomy: American Journal of Science, v. 238, p. 413431.CrossRefGoogle Scholar
Sudar, M.N., Novak, M., Korn, D., and Jovanović, D.I.V.N.A., 2018, Conodont biostratigraphy and carbonate microfacies of the Late Devonian to Mississippian Milivojevića Kamenjar section (Družetić, NW Serbia): Bulletin of Geosciences, v. 93, p. 163183.CrossRefGoogle Scholar
Sweet, W.C., 1988, The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-Extinct Animal Phylum: Oxford, UK, Clarendon Press, 212 p.Google Scholar
Teueman, A.E., 1924, The species-concept in palaeontology: Geological Magazine, v. 61, p. 355360.CrossRefGoogle Scholar
Thompson, T.L., 1967, Conodont zonation of lower Osagean rocks (Lower Mississippian) of southwestern Missouri: Missouri Geological Survey and Water Resources, Report of Investigations, v. 39, p. 188.Google Scholar
Thompson, T.L., and Fellows, L.D., 1970, Stratigraphy and conodont biostratigraphy of Kinderhookian and Osagean (Lower Mississippian) rocks of southwestern Missouri and adjacent areas: Missouri Geological Survey and Water Resources, Report of Investigations, v. 45, p. 1263.Google Scholar
Tian, S.G., and Coen, M., 2004, Conodont zonation in the Carboniferous Yanguanian–Datangian boundary in South China: Geological Bulletin of China, v. 23, p. 737749. [in Chinese, with English abstract]Google Scholar
Tschopp, E., Napoli, J.G., Wencker, L.C., Delfino, M., and Upchurch, P., 2022, How to render species comparable taxonomic units through deep time: a case study on intraspecific osteological variability in extant and extinct lacertid lizards: Systematic Biology, v. 71, p. 875900.CrossRefGoogle Scholar
von Bitter, P.H., and Merrill, G.K., 1998, Apparatus composition and structure of the Pennsylvanian conodont genus Gondolella based on assemblages from the Desmoinesian of northwestern Illinois U.S.A.: Journal of Paleontology, v. 72, p. 112132.Google Scholar
von Bitter, P.H., Norby, R.D., and Stamm, R.G., 2022, The Carboniferous conodont Lochriea commutata (Branson and Mehl, 1941), the type species of Lochriea Scott, 1942: nomenclatural history, apparatus composition and effects on Lochriea species: Journal of Paleontology, v. 96, supp. S87, 38 p.CrossRefGoogle Scholar
Wang, Q.L., 2018, The conodonts and ammonoids in the Visean–Serpukhovian boundary interval [Ph.D. dissertation]: Nanjing, China, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 250 p. [in Chinese with English abstract]Google Scholar
Wang, Q.L., Qi, Y.P., Hu, K.Y., Sheng, Q.Y., and Lin, W., 2014, Conodont biostratigraphy of the Visean–Serpukhovian boundary interval in the Luokun section, Luodian, Guizhou, South China: Journal of Stratigraphy, v. 38, p. 277289. [in Chinese with English abstract]Google Scholar
Wang, W.Q., Wang, X.D., and Hu, K.Y., 2024, Zonation and biofacies of the Early Mississippian conodonts from Baoshan, Yunnan, Southwest China: Palaeoworld, v. 33, p. 636649, https://doi.org/10.1016/j.palwor.2023.03.010Google Scholar
Webster, M., and Sheets, H.D., 2010, A practical introduction to landmark-based geometric morphometrics, in Alroy, J., and Hunt, G., eds., Quantitative Methods in Paleobiology. Paleontological Society Short Course, October 30th, 2010: The Paleontological Society Papers, v. 16, p. 163188.CrossRefGoogle Scholar
Wei, T., and Simko, V., 2017, R package “CORRPLOT”: visualization of a correlation matrix (v.0.84): https://github.com/taiyun/corrplotGoogle Scholar
Weyant, M., 1985, North Africa conodonts, in Wagner, R.H., Winkler Prins., C.F., and Granados, L.F., eds., The Carboniferous of the World, II: Madrid, Instituto Geologico y Minero de España, p. 364367.Google Scholar
Zhang, S.Q., Wang, Y.S., and Qu, Y.G., 2006, Lithostratigraphic and paleontological characteristic of the Carboniferous Yunzhug Formation in the Yunzhug area, northern Tibet: Geology in China, v. 33, p. 980987. [in Chinese with English abstract]Google Scholar
Zou, X.Q., and Ge, C.D., 1995, Characteristics of continuous variation within a population and its application to species determination: Acta Micropalaeontologica Sinica, v. 12, p. 422427. [in Chinese with English abstract]Google Scholar