Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-26T00:06:48.968Z Has data issue: false hasContentIssue false

First record of Carcharodontosauridae (Dinosauria, Theropoda) in the Upper Cretaceous Khodzhakul Formation of Uzbekistan

Published online by Cambridge University Press:  21 April 2025

Alexander O. Averianov*
Affiliation:
Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, Saint Petersburg, 199034, Russia
Ivan T. Kuzmin
Affiliation:
Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russia
Pavel P. Skutschas
Affiliation:
Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russia
Hans-Dieter Sues
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington, DC 20013-7012, USA
*
Corresponding author: Alexander O. Averianov; Email: [email protected]

Abstract

The allosauroid theropod dinosaurs of the clade Carcharodontosauridae were the apex predators in terrestrial ecosystems of the Early Cretaceous but were replaced in this ecological niche by Tyrannnosauridae in the Late Cretaceous. Details of this turnover are poorly known because only two transitional ecosystems, containing both carcharodontosaurids and tyrannosauroids, had been recognized to date (Cenomanian Cedar Mountain Formation of Utah, USA, and Turonian Bissekty Formation of Uzbekistan). Moreover, the presence of carcharodontosaurids in the Bissekty Formation, based on a maxilla fragment identified as Ulughbegsaurus uzbekistanensis Tanaka et al., 2021, has been recently questioned. Here we report on the third ecosystem containing both clades of apex predators, the Cenomanian Khodzhakul Formation in Uzbekistan. This new occurrence of Carcharodontosauridae is based on a newly identified maxilla that closely resembles the holotype maxilla of U. uzbekistanensis and is identified as Ulughbegsaurus sp. The revised morphological characters of both specimens support attribution of Ulughbegsaurus to Carcharodontosauridae. We report a novel neurovascular feature of the theropod maxilla—a medial alveolar canal that supplied the alveoli medially and contained tributaries of the palatine vessels in Ulughbegsaurus.

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Handling Editor: Daniel Ksepka

References

Averianov, A.O., 2002, An ankylosaurid (Ornithischia: Ankylosauria) braincase from the Upper Cretaceous Bissekty Formation of Uzbekistan: Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, v. 72, p. 97110.Google Scholar
Averianov, A.O., and Sues, H.-D., 2007, A new troodontid (Dinosauria: Theropoda) from the Cenomanian of Uzbekistan, with a review of troodontid records from the territories of the former Soviet Union: Journal of Vertebrate Paleontology, v. 27, p. 8798.CrossRefGoogle Scholar
Averianov, A.O., and Sues, H.-D., 2012, Skeletal remains of Tyrannosauroidea (Dinosauria: Theropoda) from the Bissekty Formation (Upper Cretaceous: Turonian) of Uzbekistan: Cretaceous Research, v. 34, p. 284297.CrossRefGoogle Scholar
Averianov, A.O., and Sues, H.-D., 2016, Troodontidae (Dinosauria: Theropoda) from the Upper Cretaceous of Uzbekistan: Cretaceous Research, v. 59, p. 98110.CrossRefGoogle Scholar
Averianov, A.O., and Sues, H.-D., 2017a, Review of Cretaceous sauropod dinosaurs from Central Asia: Cretaceous Research, v. 69, p. 184197.CrossRefGoogle Scholar
Averianov, A.O., and Sues, H.-D., 2017b, Sauropod teeth from the Upper Cretaceous Bissekty Formation of Uzbekistan: Historical Biology, v. 29, p. 641653.CrossRefGoogle Scholar
Averianov, A.O., and Sues, H.-D., 2017c, The oldest record of Alvarezsauridae (Dinosauria: Theropoda) in the Northern Hemisphere: PLoS ONE, v. 12, n. e0186254.CrossRefGoogle ScholarPubMed
Averianov, A.O., and Sues, H.-D., 2019, Morphometric analysis of the teeth and taxonomy of the enigmatic theropod Richardoestesia from the Upper Cretaceous of Uzbekistan: Journal of Vertebrate Paleontology, v. 39, n. e1614941.CrossRefGoogle Scholar
Averianov, A.O., and Sues, H.-D., 2021, First rebbachisaurid sauropod dinosaur from Asia: PLoS ONE, v. 16, n. e0246620.CrossRefGoogle ScholarPubMed
Averianov, A.O., and Sues, H.-D., 2022, New material and diagnosis of a new taxon of alvarezsaurid (Dinosauria, Theropoda) from the Upper Cretaceous Bissekty Formation of Uzbekistan: Journal of Vertebrate Paleontology, v. 41, n. e2036174CrossRefGoogle Scholar
Barker, C.T., Naish, D., Newham, E., Katsamenis, O.L., and Dyke, G.J., 2017, Complex neuroanatomy in the rostrum of the Isle of Wight theropod Neovenator salerii: Scientific Reports, v. 7, n. 3749.CrossRefGoogle ScholarPubMed
Benson, R.B.J., Carrano, M.T., and Brusatte, S.L., 2010, A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic: Naturwissenschaften, v. 97, p. 7178.CrossRefGoogle Scholar
Bouabdellah, F., Lessner, E., and Benoit, J., 2022, The rostral neurovascular system of Tyrannosaurus rex: Palaeontologia Electronica, v. 25, n. a3.Google Scholar
Brusatte, S.L., and Sereno, P.C., 2007, A new species of Carcharodontosaurus (Dinosauria: Theropoda) from the Cenomanian of Niger and a revision of the genus: Journal of Vertebrate Paleontology, v. 27, p. 902916.CrossRefGoogle Scholar
Brusatte, S.L., and Sereno, P.C., 2008, Phylogeny of Allosauroidea (Dinosauria: Theropoda): comparative analysis and resolution: Journal of Systematic Palaeontology, v. 6, p. 155182.CrossRefGoogle Scholar
Brusatte, S.L., Benson, R.B.J., and Hutt, S., 2008, The osteology of Neovenator salerii (Dinosauria: Theropoda) from the Wealden Group (Barremian) of the Isle of Wight: Monographs of the Palaeontographical Society, v. 162, 75 p.CrossRefGoogle Scholar
Brusatte, S.L., Benson, R.B.J., Chure, D.J., Xu, X., Sullivan, C., and Hone, D.W.E., 2009, The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed ascent of tyrannosaurids: Naturwissenschaften, v. 96, p. 10511058.CrossRefGoogle ScholarPubMed
Brusatte, S.L., Chure, D.J., Benson, R.B.J., and Xu, X., 2010, The osteology of Shaochilong maortuensis, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Asia: Zootaxa, v. 2334, p. 146.CrossRefGoogle Scholar
Brusatte, S.L., Benson, R.B.J., and Xu, X., 2012, A reassessment of Kelmayisaurus petrolicus, a large theropod dinosaur from the Early Cretaceous of China: Acta Palaeontologica Polonica, v. 57, p. 6572.CrossRefGoogle Scholar
Brusatte, S.L., Averianov, A.O., Sues, H.-D., Muir, A., and Butler, I.B., 2016, New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs: Proceedings of the National Academy of Sciences of the United States of America, v. 113, p. 34473452.CrossRefGoogle ScholarPubMed
Canale, J.I., Apesteguía, S., Gallina, P.A., Mitchell, J., Smith, N.D., Cullen, T.M., Shinya, A., Haluza, A., Gianechini, F.A., and Makovicky, P.J., 2022, New giant carnivorous dinosaur reveals convergent evolutionary trends in theropod arm reduction: Current Biology, v. 32, p. 31953202.CrossRefGoogle ScholarPubMed
Cau, A., 2020, The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory: PeerJ, v. 8, n. e8672.CrossRefGoogle Scholar
Chen, J., LeBlanc, A.R.H., Jin, L., Huang, T., and Reisz, R.R., 2018, Tooth development, histology, and enamel microstructure in Changchunsaurus parvus: implications for dental evolution in ornithopod dinosaurs: PLoS ONE, v. 13, n. e0205206.CrossRefGoogle ScholarPubMed
Chinsamy, A., and Raath, M.A., 1992, Preparation of fossil bone for histological examination: Palaeontologia africana, v. 29, p. 3944.Google Scholar
Coria, R.A., and Currie, P.J., 2006, A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina: Geodiversitas, v. 28, p. 71118.Google Scholar
Coria, R.A., and Salgado, L., 1995, A new giant carnivorous dinosaur from the Cretaceous of Patagonia: Nature, v. 377, p. 224226.CrossRefGoogle Scholar
Cuesta, E., Vidal, D., Ortega, F., and Sanz, J.L., 2018, The cranial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain: Cretaceous Research, v. 91, p. 176194.CrossRefGoogle Scholar
Currie, P.J., 1995, New information on the anatomy and relationships of Dromaeosaurus albertensis (Dinosauria: Theropoda): Journal of Vertebrate Paleontology, v. 15, p. 576591.CrossRefGoogle Scholar
Currie, P.J., and Carpenter, K., 2000, A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA: Geodiversitas, v. 22, p. 207246.Google Scholar
Currie, P.J., Godfrey, S.J., and Nessov, L.A., 1994, New caenagnathid (Dinosauria: Theropoda) specimens from the Upper Cretaceous of North America and Asia: Canadian Journal of Earth Sciences, v. 30, p. 22552272.CrossRefGoogle Scholar
Dong, Z.-M., 1973, Dinosaurs from Wuerho: Memoirs of the Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, v. 11, p. 4552. [in Chinese]Google Scholar
Eddy, D.R., and Clarke, J.A., 2011, New information on the cranial anatomy of Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda): PLoS ONE, v. 6, n. e17932.CrossRefGoogle ScholarPubMed
Edmund, A.G., 1960, Tooth replacement phenomena in the lower vertebrates: Contributions of the Royal Ontario Museum, Life Science Division, v. 52, 190 p.Google Scholar
Feldmann, R.M., Schweitzer, C.E., Redman, C.M., Morris, N.J., and Ward, D.J., 2007, New Late Cretaceous lobsters from the Kyzylkum Desert of Uzbekistan: Journal of Paleontology, v. 81, p. 701713.CrossRefGoogle Scholar
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F.J., Sire, J.Y., Zylberberg, L., and de Ricqlès, A., 1990, Microstructure and mineralization of vertebrate skeletal tissues, in Carter, J.G., ed., Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume 1: New York, Van Nostrand Reinhold, p. 471548.Google Scholar
Gauthier, J.A., 1986, Saurischian monophyly and the origin of birds: Memoirs of the California Academy of Sciences, v. 8, p. 155.Google Scholar
Gilmore, C.W., 1920, Osteology of the carnivorous Dinosauria in the United States National Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus: Bulletin of the Unites States National Museum, v. 110, 159 p.Google Scholar
Hendrickx, C., and Mateus, O., 2014, Torvosaurus gurneyi n. sp., the largest terrestrial predator from Europe, and a proposed terminology of the maxilla anatomy in nonavian theropods: PLoS ONE, v. 9, n. E88905.CrossRefGoogle Scholar
Horner, J.R., de Ricqlès, A.J., and Padian, K., 2000, Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements: Journal of Vertebrate Paleontology, v. 20, p. 115129.CrossRefGoogle Scholar
Hu, S.-Y., 1964, Carnosaurian remains from Alashan, Inner Mongolia: Vertebrata PalAsiatica, v. 8, p. 4263.Google Scholar
Hutt, S., Martill, D.M., and Barker, M.J., 1996, The first European allosaurid dinosaur: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 1996, p. 635644.CrossRefGoogle Scholar
Klein, N., and Sander, M., 2008, Ontogenetic stages in the long bone histology of sauropod dinosaurs: Paleobiology, v. 34, p. 247263.CrossRefGoogle Scholar
Kurzanov, S.M., 1976, Structure of the braincase of the carnosaur Itemirus gen. nov. and some questions of dinosaur cranial anatomy: Paleontologicheskii Zhurnal, v. 3, p. 127137. [in Russian]Google Scholar
Kuzmin, I.T., Petrov, I., Averianov, A.O., Boitsova, E.A., Skutschas, P.P., and Sues, H.-D., 2020, The braincase of Bissektipelta archibaldi—new insights into endocranial osteology, vasculature, and paleoneurobiology of ankylosaurian dinosaurs: Biological Communications, v. 65, p. 85156.CrossRefGoogle Scholar
Madsen, J.H. Jr. 1976, A second new theropod dinosaur from the Late Jurassic of east central Utah: Utah Geology, v. 1, p. 5160.CrossRefGoogle Scholar
Marsh, O.C., 1878, Principal characters of American Jurassic dinosaurs: Pt. I: American Journal of Science, s. 3, v. 16, p. 411416.CrossRefGoogle Scholar
Marsh, O.C., 1881, Classification of Dinosauria: American Journal of Science, s. 3, v. 23, p. 8186.Google Scholar
Marsh, O.C., 1884, Principal characters of American Jurassic dinosaurs: Pt. VII. The order Theropoda: American Journal of Science, s. 3, v. 27, p. 329340.CrossRefGoogle Scholar
Nesov, L.A., 1995, Dinosaurs of Northern Eurasia: New Data about Assemblages, Ecology and Paleobiogeography: Saint Petersburg, Izdatelstvo Sankt-Peterburgskogo Universiteta, 156 p. [in Russian]Google Scholar
Nesov, L.A., Kaznyshkina, L.F., and Cherepanov, G.O., 1989, Ceratopsian dinosaurs and crocodiles of the Mesozoic of Middle Asia, in Bogdanova, T.N., and Khozatsky, L.I., eds., Theoretical and Applied Aspects of Modern Paleontology: Leningrad, Nauka, p. 144154. [in Russian]Google Scholar
Ortega, F., Escaso, F., and Sanz, J.L., 2010, A bizarre, humped Carcharodontosauria (Theropoda) from the Lower Cretaceous of Spain: Nature, v. 467, p. 203206.CrossRefGoogle ScholarPubMed
Owen, R., 1842, Report on British fossil reptiles. Part II: Report of the British Association for the Advancement of Science, 11th Meeting, Bristol 1841, p. 60204.Google Scholar
Padian, K., Werning, S., and Horner, J.R., 2016, A hypothesis of differential secondary bone formation in dinosaurs: Comptes Rendus Palevol, v. 15, p. 4048.CrossRefGoogle Scholar
Porter, W.R., and Witmer, L.M., 2020, Vascular patterns in the heads of dinosaurs: evidence for blood vessels, sites of thermal exchange, and their role in physiological thermoregulatory strategies: The Anatomical Record, v. 303, p. 10751103.CrossRefGoogle ScholarPubMed
Powers, M.J., Fabbri, M., Doschak, M.R., Bhullar, B.-A.S., Evans, D.C., Norell, M.A., and Currie, P.J., 2022, A new hypothesis of eudromaeosaurian evolution: CT scans assist in testing and constructing morphological characters: Journal of Vertebrate Paleontology, v. 41, n. e2010087.CrossRefGoogle Scholar
Pyatkov, K.K., Pyanovskaya, I.A., Bukharin, A.K., and Bykovskii, Y.K., 1967, Geological Structure of Central Kyzylkum: Tashkent, Fan, 177 p. [in Russian]Google Scholar
Rainwater, T.R., Woodward, H.N., Woodward, A.R., and Wilkinson, P.M., 2022, Evidence of determinate growth in an American alligator (Alligator mississippiensis) based on long-term recapture and osteohistological confirmation: The Anatomical Record, v. 305, p. 31013108.CrossRefGoogle Scholar
Rauhut, O.W.M., 2003, The interrelationships and evolution of basal theropod dinosaurs: Special Papers in Palaeontology, v. 69, 216 p.Google Scholar
Redman, C.M., and Leighton, L.R., 2009, Multivariate faunal analysis of the Turonian Bissekty Formation: variation in the degree of marine influence in temporally and spatially averaged fossil assemblages: Palaios, v. 24, p. 1826.CrossRefGoogle Scholar
Scannella, J.B., and Horner, J.R., 2010, Torosaurus Marsh, 1891, is Triceratops Marsh, 1889 (Ceratopsidae: Chasmosaurinae): synonymy through ontogeny: Journal of Vertebrate Paleontology, v. 30, p. 11571168.CrossRefGoogle Scholar
Seeley, H.G., 1887, On the classification of the fossil animals commonly named Dinosauria: Proceedings of the Royal Society of London, v. 43, p. 165171.Google Scholar
Sereno, P.C., and Brusatte, S.L., 2008, Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formationof Niger: Acta Palaeontologica Polonica, v. 53, p. 1546.CrossRefGoogle Scholar
Sereno, P.C., Dutheil, D.B., Iarochene, M., Larsson, H.C.E., Lyon, G.H., Magwene, P.M., Sidor, C.A., Varricchio, D.J., and Wilson, J.A., 1996, Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation: Science, v. 272, p. 986991.CrossRefGoogle ScholarPubMed
Stovall, J.W., and Langston, W. Jr. 1950, Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma: American Midland Naturalist, v. 43, p. 696728.CrossRefGoogle Scholar
Stromer, E., 1931, Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltierreste der Baharîje-Stufe (unterstes Cenoman). 10. Ein Skelett-Rest von Carcharodontosaurus nov. gen.: Abhandlungen der Bayerischen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Abteilung, Neue Folge, v. 9, p. 123.Google Scholar
Sues, H.-D., and Averianov, A.O., 2009, Turanoceratops tardabilis —the first ceratopsid dinosaur from Asia: Naturwissenschaften, v. 96, p. 645652.CrossRefGoogle ScholarPubMed
Sues, H.-D., and Averianov, A.O., 2013, Enigmatic teeth of small theropod dinosaurs from the Upper Cretaceous (Cenomanian–Turonian) of Uzbekistan: Canadian Journal of Earth Sciences, v. 50, p. 306314.CrossRefGoogle Scholar
Sues, H.-D., and Averianov, A.O., 2014, Dromaeosauridae (Dinosauria: Theropoda) from the Bissekty Formation (Upper Cretaceous: Turonian) of Uzbekistan and the phylogenetic position of Itemirus medullaris Kurzanov, 1976: Cretaceous Research, v. 51, p. 225240.CrossRefGoogle Scholar
Sues, H.-D., and Averianov, A.O., 2015, New material of Caenagnathasia martinsoni (Dinosauria: Theropoda: Oviraptorosauria) from the Bissekty Formation (Upper Cretaceous: Turonian) of Uzbekistan: Cretaceous Research, v. 54, p. 5059.CrossRefGoogle Scholar
Sues, H.-D., and Averianov, A.O., 2016a, Ornithomimidae (Dinosauria: Theropoda) from the Bissekty Formation (Upper Cretaceous: Turonian) of Uzbekistan: Cretaceous Research, v. 57, p. 90110.CrossRefGoogle Scholar
Sues, H.-D., and Averianov, A.O., 2016b, Therizinosauroidea (Dinosauria: Theropoda) from the Upper Cretaceous of Uzbekistan: Cretaceous Research, v. 59, p. 155178.CrossRefGoogle Scholar
Sues, H.-D., Averianov, A.O., Ridgely, R.C., and Witmer, L.M., 2015, Titanosauria (Dinosauria: Sauropoda) from the Upper Cretaceous (Turonian) Bissekty Formation of Uzbekistan: Journal of Vertebrate Paleontology, v. 35, n. e889145.CrossRefGoogle Scholar
Sues, H.-D., Averianov, A.O., and Britt, B.B., 2023, A giant dromaeosaurid theropod from the Upper Cretaceous (Turonian) Bissekty Formation of Uzbekistan and the status of Ulughbegsaurus uzbekistanensis: Geological Magazine, v. 160, p. 355360.CrossRefGoogle Scholar
Tanaka, K., Anvarov, K.O.U.O., Zelenitsky, D.K., Ahmedshaev, A.S., and Kobayashi, Y., 2021, A new carcharodontosaurian theropod dinosaur occupies apex predator niche in the early Late Cretaceous of Uzbekistan: Royal Society Open Science, v. 8, n. 210923.CrossRefGoogle ScholarPubMed
Ward, D.J., King, C., Morris, N.J., and Kennedy, W.J., 2023, On some Upper Cretaceous ammonites from western Uzbekistan: Acta Geologica Polonica, v. 73, p. 613634.CrossRefGoogle Scholar
Werning, S. 2012, The ontogenetic osteohistology of Tenontosaurus tilletti: PLoS ONE, v. 7, n. e33539.CrossRefGoogle ScholarPubMed
Witmer, L.M., 1997, The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity: Society of Vertebrate Paleontology Memoir, v. 3, p. 173.CrossRefGoogle Scholar
Woodward, H.N., Horner, J.R., and Farlow, J.O., 2011, Osteohistological evidence for determinate growth in the American alligator: Journal of Herpetology, v. 45, p. 339342.CrossRefGoogle Scholar
Wu, P., Wu, X., Jiang, T.-X., Elsey, R.M., and Temple, B.L., 2013, Specialized stem cell niche enables repetitive renewal of alligator teeth: Proceedings of the National Academy of Sciences of the United States of America, v. 110, p. E2009E2018.Google ScholarPubMed
Zanno, L.E., and Makovicky, P.J., 2013, Neovenatorid theropods are apex predators in the Late Cretaceous of North America: Nature Communications, v. 4, n. 2827.CrossRefGoogle ScholarPubMed
Zanno, L.E., Tucker, R.T., Canoville, A., Avrahami, H.M., Gates, T.A., and Makovicky, P.J., 2019, Diminutive fleet-footed tyrannosauroid narrows the 70-million-year gap in the North American fossil record: Communications Biology, v. 2, n. 64.CrossRefGoogle ScholarPubMed