Hostname: page-component-7b9c58cd5d-v2ckm Total loading time: 0 Render date: 2025-03-13T11:55:43.328Z Has data issue: false hasContentIssue false

Robust centroid extraction using the hybrid genetic algorithm with applications to planetary optical navigation

Published online by Cambridge University Press:  11 March 2025

Qichang Qiang
Affiliation:
Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Beijing, China Shanghai Engineering Center for Microsatellites, Shanghai, China
Baojun Lin*
Affiliation:
Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Beijing, China Shanghai Engineering Center for Microsatellites, Shanghai, China School of Information Science and Technology, Shanghai Tech University, Shanghai, China
Yingchun Liu
Affiliation:
Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Beijing, China Shanghai Engineering Center for Microsatellites, Shanghai, China
*
*Corresponding author. Baojun Lin; Email: [email protected]

Abstract

Traditional radiometric tracking navigation increasingly fails to meet the demands of deep space exploration. In contrast, optical navigation enables interplanetary spacecraft to navigate autonomously with higher precision. The effectiveness of image processing algorithms plays a crucial role in determining the accuracy of optical navigation systems. This paper presents a robust centroid extraction method based on a hybrid genetic algorithm. First, noise interference is effectively reduced by leveraging proximity information. Second, a fitness evaluation mechanism is introduced to assess model performance throughout the iterative process. Third, an annealing mutation operator is incorporated to prevent premature convergence to local optima. Finally, extensive comparative testing demonstrates that the proposed method offers substantial improvements in both accuracy and robustness, thereby substantially improving the reliability of the navigation system under complex conditions.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A'Hearn, M. F., Belton, M. J. S., Delamere, W. A., McFadden, L. A., Meech, K. J., Melosh, H. J., Schultz, P. H., Sunshine, J. M., Thomas, P. C., Veverka, J., Yeomans, D. K., Baca, M. W., Busko, I., Crockett, C. J., Collins, S. M., Desnoyer, M., Eberhardy, C. A., Ernst, C. M., Farnham, T. L., Feaga, L., Groussin, O., Hampton, D., Ipatov, S. I., Li, J.-Y., Lindler, D., Lisse, C. M., Mastrodemos, N., Owen, Jr., W. M., Richardson, J. E., Wellnitz, D. D. and White, R. L. (2005). Deep impact: Excavating comet Tempel 1. Science, 310(5746), 258264.CrossRefGoogle ScholarPubMed
Albee, A. L., Arvidson, R. E., Palluconi, F. and Thorpe, T. (2001). Overview of the Mars global surveyor mission. Journal of Geophysical Research: Planets, 106(E10), 2329123316.CrossRefGoogle Scholar
Bhaskaran, S., Riedel, J., Synnott, S. and Wang, T. (2000). The Deep Space 1 Autonomous Navigation System-A Post-Flight Analysis. Astrodynamics Specialist Conference. p. 3935.CrossRefGoogle Scholar
Borissov, S. and Mortari, D. (2014). Optimal single-point and filtered pose estimation for lunar orbiters using visible camera.Google Scholar
Cheng, Y., Johnson, A. E., Matthies, L. H. and Olson, C. F. (2003). Optical Landmark Detection for Spacecraft Navigation. 13th AAS/AIAA Space Flight Mechanics Meeting, 224.Google Scholar
Christian, J. A. (2010). Optical navigation for a spacecraft in a planetary system.Google Scholar
Christian, J. A. and Lightsey, E. G. (2012). Onboard image-processing algorithm for a spacecraft optical navigation sensor system. Journal of Spacecraft and Rockets, 49, 337352.CrossRefGoogle Scholar
Dong, W., Roy, P., Peng, C. and Isler, V. (2021). Ellipse R-CNN: Learning to infer elliptical object from clustering and occlusion. IEEE Transactions on Image Processing, 30, 21932206.CrossRefGoogle ScholarPubMed
Duan, H., Sun, Y. and Shi, Y. (2020). Bionic visual control for probe-and-drogue autonomous aerial refueling. IEEE Transactions on Aerospace and Electronic Systems, 57(2), 848865.CrossRefGoogle Scholar
Gaskell, R. W. (2011). Optical navigation near small bodies. Advances in the Astronautical Sciences, 140, 17051717.Google Scholar
Hanak, F. C. (2009). Lost in low lunar orbit crater pattern detection and identification.Google Scholar
Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A. and Tillman, J. E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82(28), 45594574.CrossRefGoogle Scholar
Jia, Q., Liu, Z., Liu, Y., Wang, Y., Xue, X. and Wang, W. (2024). Shape-Aware ellipse detection via parametric correlation learning. Available at SSRN 4861105.CrossRefGoogle Scholar
Liu, Z., Liu, X., Duan, G. and Tan, J. (2020). A real-time and precise ellipse detector via edge screening and aggregation. Machine Vision and Applications, 31, 123.CrossRefGoogle Scholar
Long, C., Hu, Q., Zhao, M., Li, D., Ouyang, Z. and Yan, D. M. (2023). A triple-stage robust ellipse fitting algorithm based on outlier removal. IEEE Transactions on Instrumentation and Measurement, 72, 114.Google Scholar
Masursky, H. (1973). An overview of geological results from Mariner 9. Journal of Geophysical Research, 78(20), 40094030.CrossRefGoogle Scholar
Mortari, D., D'Souza, C. N. and Zanetti, R. (2013). Image processing of illuminated ellipsoid. Journal of Spacecraft & Rockets, 53(3), 19.Google Scholar
Ou, W. L., Kuo, T. L., Chang, C. C. and Fan, C. P. (2021). Deep-learning-based pupil center detection and tracking technology for visible-light wearable gaze tracking devices. Applied Sciences, 11(2), 851.CrossRefGoogle Scholar
Owen, W. M. Jr (2011). Methods of Optical Navigation (No. AAS 11-215).Google Scholar
Panagiotakis, C. and Argyros, A. (2020). Region-based fitting of overlapping ellipses and its application to cells segmentation. Image and Vision Computing, 93, 103810.CrossRefGoogle Scholar
Pruthi, J., Khanna, K. and Arora, S. (2020). Optic Cup segmentation from retinal fundus images using glowworm swarm optimization for glaucoma detection. Biomedical Signal Processing and Control, 60, 102004.CrossRefGoogle Scholar
Psiaki, M. and Hinks, J. (2007). Autonomous lunar orbit determination using star occultation measurements. AIAA Guidance, Navigation and Control Conference and Exhibit (p. 6657).CrossRefGoogle Scholar
Rohrschneider, R. (2011) Terrain Relative Navigation Using Crater Identification in Surface Topography Data. Aiaa Guidance, Navigation, & Control Conference.CrossRefGoogle Scholar
Synnott, S. P., Donegan, A. J., Riedel, J. E., et al. (1986). Interplanetary Optical Navigation - Voyager Uranus Encounter. In Astrodynamics 1985,.CrossRefGoogle Scholar
Toso, F., Berto, M., Alberti, L., et al. (2019). Efficient QR updating factorization for sensorless synchronous motor drive based on high frequency voltage injection. IEEE Transactions on Industrial Electronics, 67(12), 1021310222.CrossRefGoogle Scholar
Wang, Z., Zhong, B. and Ma, K. K. (2024). Anisotropic scale-invariant ellipse detection. IEEE Transactions on Image Processing, 33, 31613173.CrossRefGoogle ScholarPubMed
Wang, T., Lu, C., Shao, M., et al. (2022). Eldet: An Anchor-Free General Ellipse Object Detector. Proceedings of the Asian Conference on Computer Vision, p. 25802595.Google Scholar