Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-27T19:43:31.989Z Has data issue: false hasContentIssue false

Performance of GNSS space service for geostationary autonomous operations

Published online by Cambridge University Press:  03 December 2024

Fangtan Jiao*
Affiliation:
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China Key Laboratory of Geo-spatial Information Processing and Application System Technology, Chinese Academy of Sciences, Beijing 100190, China University of Chinese Academy of Sciences, Beijing 100049, China School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Yuxin Hu
Affiliation:
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China Key Laboratory of Geo-spatial Information Processing and Application System Technology, Chinese Academy of Sciences, Beijing 100190, China University of Chinese Academy of Sciences, Beijing 100049, China
Xiaodong Yu
Affiliation:
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China Key Laboratory of Geo-spatial Information Processing and Application System Technology, Chinese Academy of Sciences, Beijing 100190, China
*
*Corresponding author: Fangtan Jiao; Email: [email protected]

Abstract

The geostationary orbit (GEO) belt hosts a substantial number of high-value satellites, making the study of autonomous navigation within this area significant. Features of autonomous operations such as patrolling the GEO belt and frequent manoeuvres at a certain location make real-time positioning using the Global Navigation Satellite System (GNSS) valuable. This paper studies the performance of positioning with GNSS considering main lobe and side lobe signals at different longitudes in the GEO belt. The research delves into the visibility and Position Dilution of Precision (PDOP) across the GEO belt, analysing the performance of the Global Positioning System (GPS), GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) in Russian, BeiDou Navigation Satellite System (BDS), Galileo Navigation Satellite System (Galileo) and multi-systems. In particular, this paper investigates the impact of asymmetric constellations of mixed GEO, Inclined Geosynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. The study reveals that BDS hybrid constellation provides long-term stable signal coverage over the GEO space above North America and Atlantic Ocean, where GEO signals are more sustainable while IGSO signals have wider coverage. This advantage positions BDS favourably in terms of performance in these regions.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ananda, M. P. and Jorgensen, P. S. (1985). Orbit Determination of Geostationary Satellites Using the Global Positioning System. In Proceedings of the Symposium on Space Dynamics for Geostationary Satellites, Toulouse, France.Google Scholar
Ashman, B., Bauer, F. H., Parker, J. and Donaldson, J. (2018). GPS Operations in High Earth Orbit: Recent Experiences and Future Opportunities. In Proceedings of the 15th International Conference on Space Operations (SpaceOps 2018), Marseille, France.CrossRefGoogle Scholar
Barker, L. and Frey, C. (2012). GPS at GEO: A First look at GPS From SBIRS GEO1. In Proceedings of the 35th Annual AAS Guidance and Control Conference, Breckenridge, Colorado.Google Scholar
Bauer, F. H., Moreau, M. C., Dahle-Melsaether, M. E., Petrofski, W. P., Stanton, B. J., Thomason, S., Harris, G. A., Sena, R. P. and Temple, L. P. III. (2006). The GPS Space Service Volume. In Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, Texas.Google Scholar
Bauer, F. H., Parker, J. J. K., Welch, B. and Enderle, W. (2017). Developing A Robust, Interoperable GNSS Space Service Volume (SSV) for the Global Space User Community. In Proceedings of the 2017 International Technical Meeting of The Institute of Navigation, Monterey, California.CrossRefGoogle Scholar
Bock, H., Hugentobler, U., Springer, T. A. and Beutler, G. (2002). Efficient precise orbit determination of LEO satellites using GPS. Advances in Space Research, 30(2), 295300. doi:10.1016/s0273-1177(02)00298-3CrossRefGoogle Scholar
Capuano, V., Shehaj, E., Blunt, P., Botteron, C. and Farine, P. A. (2017). High accuracy GNSS based navigation in GEO. Acta Astronautica, 136, 332341. doi:10.1016/j.actaastro.2017.03.014CrossRefGoogle Scholar
Chai, J., Wang, X., Yu, N., Wang, D. and Li, Q. (2018). Modeling and intensity analysis of GNSS signal link for high-orbit spacecraft. Journal of Beijing University of Aeronautics and Astronautics, 44(7), 14961503. doi:10.13700/j.bh.1001-5965.2017.0502Google Scholar
Combined Force Space Component Command (2023). Space-track. https://www.space-track.org/#/favorites (accessed 21 September 2023).Google Scholar
Du, L. (2006). A study on the precise orbit determination of geostationary satellites. Doctoral dissertation, Information Engineering University.Google Scholar
Filippi, H., Gottzein, E., Kuehl, C., Mueller, C., Barrios-Montalvo, A. and Dauphin, H. (2010). Feasibility of GNSS Receivers for Satellite Navigation in GEO and Higher Altitudes. In 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands.CrossRefGoogle Scholar
Guan, M., Xu, T., Li, M., Gao, F. and Mu, D. (2022). Navigation in GEO, HEO, and Lunar trajectory using multi-GNSS sidelobe signals. Remote Sensing, 14(2), 318. doi:10.3390/rs14020318CrossRefGoogle Scholar
Jiang, K., Li, M., Wang, M., Zhao, Q. and Li, W. (2018). TJS-2 geostationary satellite orbit determination using onboard GPS measurements. GPS Solutions, 22(3), 87. doi:10.1007/s10291-018-0750-xCrossRefGoogle Scholar
Jing, S., Zhan, X., Lu, J., Feng, S. and Ochieng, W. (2015). Characterisation of GNSS space service volume. The Journal of Navigation, 68(1), 107125. doi:10.1017/S0373463314000472CrossRefGoogle Scholar
Kang, Z., Tapley, B., Bettadpur, S., Ries, J., Nagel, P. and Pastor, R. (2006). Precise orbit determination for the GRACE mission using only GPS data. Journal of Geodesy, 80(6), 322331. doi:10.1007/s00190-006-0073-5CrossRefGoogle Scholar
Li, M., Li, W., Shi, C., Jiang, K., Guo, X., Dai, X., Meng, X., Yang, Z., Yang, G. and Liao, M. (2017). Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations. Journal of Geodesy, 91(11), 13131327. doi:10.1007/s00190-017-1027-9CrossRefGoogle Scholar
Lin, K., Zhan, X., Yang, R., Shao, F. and Huang, J. (2020). BDS space service volume characterizations considering side-lobe signals and 3D antenna pattern. Aerospace Science and Technology, 106, 106071. doi:10.1016/j.ast.2020.106071CrossRefGoogle Scholar
Lorga, J. F. M., Silva, P. F., Dovis, F., Di Cintio, A., Kowaltschek, S., Jimenez, D. and Jansson, R. (2010). Autonomous Orbit Determination for Future GEO and HEO Missions. In 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands.CrossRefGoogle Scholar
Maestrini, M. and Di Lizia, P. (2022). Guidance strategy for autonomous inspection of unknown non-cooperative resident space objects. Journal of Guidance, Control, and Dynamics, 45(6), 11261136. doi:10.2514/1.g006126CrossRefGoogle Scholar
Marmet, F. X., Maureau, J., Calaprice, M. and Aguttes, J. P. (2015). GPS/Galileo navigation in GTO/GEO orbit. Acta Astronautica, 117, 263276. doi:10.1016/j.actaastro.2015.08.008CrossRefGoogle Scholar
Marquis, W. A. and Reigh, D. L. (2015). The GPS block IIR and IIR-M broadcast L-band antenna panel: Its pattern and performance. NAVIGATION: Journal of the Institute of Navigation, 62(4), 329347. doi:10.1002/navi.123CrossRefGoogle Scholar
Meng, L., Wang, J., Chen, J., Wang, B. and Zhang, Y. (2020). Extended geometry and probability model for GNSS+ constellation performance evaluation. Remote Sensing, 12(16), 2560. doi:10.3390/rs12162560CrossRefGoogle Scholar
Nakajima, Y., Yamamoto, T., Miyashita, N., Shintate, K., Matsumoto, T., Sakamoto, T., Harada, R. and Kumagai, S. (2023). Flight results of GPS receiver for geosynchronous satellites. Journal of Evolving Space Activities, 1, 24. doi:10.57350/jesa.24Google Scholar
Qin, H. and Liang, M. (2008). Research on positioning of high earth orbital satellite using GNSS. Chinese Journal of Space Science, 28(4), 316325. doi:10.11728/cjss2008.04.316CrossRefGoogle Scholar
Shi, T., Zhuang, X. and Xie, L. (2021). Performance evaluation of multi-GNSSs navigation in super synchronous transfer orbit and geostationary earth orbit. Satellite Navigation, 2(1), 5. doi:10.1186/s43020-021-00036-0CrossRefGoogle Scholar
Starek, J. A., Açıkmeşe, B., Nesnas, I. A. and Pavone, M. (2016). Spacecraft autonomy challenges for next-generation space missions. In: Feron, E. (ed.). Advances in Control System Technology for Aerospace Applications, Berlin, Heidelberg: Springer, 148.Google Scholar
Union of Concerned Scientists. (2023). UCS satellite database. https://www.ucsusa.org/resources/satellite-database#.W7WcwpMza9Y (accessed 21 September 2023).Google Scholar
United Nations Office for Outer Space Affairs. (2021). The Interoperable Global Navigation Satellite Systems Space Service Volume (2nd ed). Vienna: United Nations Office.Google Scholar
Wang, J., Iz, B. and Lu, C. (2002). Dependency of GPS positioning precision on station location. GPS Solutions, 6(1), 9195. doi:10.1007/s10291-002-0021-7CrossRefGoogle Scholar
Wang, W., Dong, X., Liu, L. and Yang, Y. (2011). Research and simulation of orbit determination for geostationary satellite based on GNSS. Acta Geodaetica et Cartographica Sinica, 40(Sup.), 610.Google Scholar
Wang, M., Wang, J., Dong, D., Meng, L., Chen, J., Wang, A. and Cui, H. (2019). Performance of BDS-3: Satellite visibility and dilution of precision. GPS Solutions, 23(2), 56. doi:10.1007/s10291-019-0847-xCrossRefGoogle Scholar
Wang, M., Shan, T. and Wang, D. (2020). Development of GNSS technology for high earth orbit spacecraft. Acta Geodaetica et Cartographica Sinica, 49(9), 11581167. doi:10.11947/j.AGCS.2020.20200170Google Scholar
Wang, M., Shan, T., Li, M., Liu, L. and Tao, R. (2021). GNSS-based orbit determination method and flight performance for geostationary satellites. Journal of Geodesy, 95(8), 89. doi:10.1007/s00190-021-01545-1CrossRefGoogle Scholar
Weeden, B. and Samson, V. (2018). Global Counterspace Capabilities: An Open Source Assessment. Washington, D.C.: Secure World Foundation.Google Scholar
Winkler, S., Ramsey, G., Frey, C., Chapel, J., Chu, D., Freesland, D., Krimchansky, A. and Concha, M. (2017). GPS Receiver on-Orbit Performance for the GOES-R Spacecraft. In 10th International ESA Conference on Guidance, Navigation and Control Systems, Salzburg, Austria.Google Scholar
Winternitz, L. M. B., Bamford, W. A. and Heckler, G. W. (2009). A GPS receiver for high-altitude satellite navigation. IEEE Journal of Selected Topics in Signal Processing, 3(4), 541556. doi:10.1109/JSTSP.2009.2023352CrossRefGoogle Scholar
Woffinden, D. C. and Geller, D. K. (2007). Navigating the road to autonomous orbital rendezvous. Journal of Spacecraft and Rockets, 44(4), 898909. doi:10.2514/1.30734CrossRefGoogle Scholar
Xu, W., Liang, B., Li, B. and Xu, Y. (2011). A universal on-orbit servicing system used in the geostationary orbit. Advances in Space Research, 48(1), 95119. doi:10.1016/j.asr.2011.02.012CrossRefGoogle Scholar
Yang, J., Wang, X. and Chen, D. (2021). Design of a GNSS vector tracking scheme for high-orbit space. Journal of Beijing University of Aeronautics and Astronautics, 47(9), 17991806. doi:10.13700/j.bh.1001-5965.2020.0300Google Scholar
Zeng, Z., Hu, X., Zhang, X. and Wan, W. (2004). Inversion methods for ionospheric occultation from GPS observation data. Chinese Journal of Geophysics, 47(4), 660666. doi:10.1002/cjg2.3534Google Scholar
Zhao, X., Zhou, S., Ci, Y., Hu, X., Cao, J., Chang, Z., Tang, C., Guo, D., Guo, K. and Liao, M. (2020). High-precision orbit determination for a LEO nanosatellite using BDS-3. GPS Solutions, 24(4), 102. doi:10.1007/s10291-020-01015-9CrossRefGoogle Scholar
Zou, D., Zhang, Q., Cui, Y., Liu, Y., Zhang, J., Cheng, X. and Liu, J. (2019). Orbit determination algorithm and performance analysis of high-orbit spacecraft based on GNSS. IET Communications, 13(20), 33773382. doi:10.1049/iet-com.2019.0434CrossRefGoogle Scholar