Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-05-03T18:54:22.589Z Has data issue: false hasContentIssue false

Predicting noise-induced hearing loss with machine learning: the influence of tinnitus as a predictive factor

Published online by Cambridge University Press:  09 May 2024

Emre Soylemez*
Affiliation:
Department of Audiometry, Vocational School of Health Services, Karabuk University, Karabuk, Türkiye Audiology and Speech Pathology Ph.D. Program, Health Sciences Institute, Ankara University, Ankara, Türkiye
Isa Avci
Affiliation:
Department of Computer Engineering, Karabuk University, Karabuk, Türkiye
Elif Yildirim
Affiliation:
Department of Computer Engineering, Karabuk University, Karabuk, Türkiye
Engin Karaboya
Affiliation:
Department of Audiology, Karabuk Training and Research Hospital, Karabuk, Türkiye
Nihat Yilmaz
Affiliation:
Department of Otorhinolaryngology, Karabuk University, Karabuk, Türkiye
Süha Ertugrul
Affiliation:
Department of Otorhinolaryngology, Karabuk University, Karabuk, Türkiye
Suna Tokgoz-Yilmaz
Affiliation:
Department of Audiology, Faculty of Health Sciences, Ankara University, Ankara, Türkiye Audiology, Balance and Speech Disorders Unit, Medical Faculty, Ankara University, Ankara, Türkiye
*
Corresponding author: Emre Soylemez; Email: [email protected]

Abstract

Objectives

This study aimed to determine which machine learning model is most suitable for predicting noise-induced hearing loss and the effect of tinnitus on the models’ accuracy.

Methods

Two hundred workers employed in a metal industry were selected for this study and tested using pure tone audiometry. Their occupational exposure histories were collected, analysed and used to create a dataset. Eighty per cent of the data collected was used to train six machine learning models and the remaining 20 per cent was used to test the models.

Results

Eight workers (40.5 per cent) had bilaterally normal hearing and 119 (59.5 per cent) had hearing loss. Tinnitus was the second most important indicator after age for noise-induced hearing loss. The support vector machine was the best-performing algorithm, with 90 per cent accuracy, 91 per cent F1 score, 95 per cent precision and 88 per cent recall.

Conclusion

The use of tinnitus as a risk factor in the support vector machine model may increase the success of occupational health and safety programmes.

Type
Main Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Emre Soylemez takes responsibility for the integrity of the content of the paper

References

Nelson, DI, Nelson, RY, Concha-Barrientos, M, Fingerhut, M. The global burden of occupational noise-induced hearing loss. Am J Ind Med 2005;48:446–58CrossRefGoogle ScholarPubMed
Rabinowitz, PM. Noise-induced hearing loss. Am Fam Physician 2000;61:2749–56Google ScholarPubMed
Schmucker, C, Kapp, P, Motschall, E, Loehler, J, Meerpohl, JJ. Prevalence of hearing loss and use of hearing aids among children and adolescents in Germany: a systematic review. BMC Public Health 2019;19:1277CrossRefGoogle ScholarPubMed
Manar, MK, Shukla, SP, Mohan, U, Singh, SK, Verma, V. Validation of a questionnaire to identify noise-induced hearing loss among drivers. J Family Med Prim Care 2019;8:1196–201CrossRefGoogle ScholarPubMed
Lapsley Miller, JA, Marshall, L, Heller, LM, Hughes, LM. Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss. J Acoust Soc Am 2006;120:280–96CrossRefGoogle ScholarPubMed
Zhao, Y, Li, J, Zhang, M, Lu, Y, Xie, H, Tian, Y et al. Machine learning models for the hearing impairment prediction in workers exposed to complex industrial noise: a pilot study. Ear Hear 2019;40:690–9CrossRefGoogle ScholarPubMed
McKearney, RM, MacKinnon, RC. Objective auditory brainstem response classification using machine learning. Int J Audiol 2019;58:224–30CrossRefGoogle ScholarPubMed
Chen, F, Cao, Z, Grais, EM, Zhao, F. Contributions and limitations of using machine learning to predict noise-induced hearing loss. Int Arch Occup Environ Health 2021;94:1097–111CrossRefGoogle ScholarPubMed
Mrena, R, Ylikoski, M, Mäkitie, A, Pirvola, U, Ylikoski, J. Occupational noise-induced hearing loss reports and tinnitus in Finland. Acta Otolaryngol 2007;127:729–35CrossRefGoogle ScholarPubMed
Hasan, M, Balbahaith, Z, Tarique, M. Detection of SQL injection attacks: a machine learning approach. In: 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA). Ras Al Khaimah: IEEE, 2019;16.Google Scholar
Hosam, E, Hosny, H, Ashraf, W, Kaseb, AS. SQL injection detection using machine learning techniques. In: 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI). Cairo: IEEE, 2021;1520.Google Scholar
Bui, XN, Jaroonpattanapong, P, Nguyen, H, Tran, QH, Long, NQ. A novel hybrid model for predicting blast-induced ground vibration based on k-nearest neighbors and particle swarm optimization. Sci Rep 2019;9:13971CrossRefGoogle ScholarPubMed
Song, YY, Lu, Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 2015;27:130–5Google ScholarPubMed
Bandyopadhyay, N, Jadhav, A. Churn prediction of employees using machine learning techniques. Tehnički Glasnik 2021;15:51–9CrossRefGoogle Scholar
Stoltzfus, JC. Logistic regression: a brief primer. Acad Emerg Med 2011;18:1099–104CrossRefGoogle ScholarPubMed
Jain, R, Nayyar, A. Predicting employee attrition using XGBoost machine learning approach. In: International Conference on System Modeling & Advancement in Research Trends (SMART). Moradabad: IEEE, 2018;113–20.Google Scholar
Hirose, K, Discolo, CM, Keasler, JR, Ransohoff, R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 2005;489:180–94CrossRefGoogle ScholarPubMed
Le, TN, Straatman, LV, Lea, J, Westerberg, B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg 2017;46:41CrossRefGoogle ScholarPubMed
Davies, H, Marion, S, Teschke, K. The impact of hearing conservation programs on incidence of noise-induced hearing loss in Canadian workers. Am J Ind Med 2008;51:923–31CrossRefGoogle ScholarPubMed
Ramakers, GG, Kraaijenga, VJ, Cattani, G, van Zanten, GA, Grolman, W. Effectiveness of earplugs in preventing recreational noise-induced hearing loss: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg 2016;142:551–8CrossRefGoogle ScholarPubMed
Kamogashira, T, Fujimoto, C, Yamasoba, T. Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. Biomed Res Int 2015;2015:617207CrossRefGoogle ScholarPubMed
Istrate, M, Hasbei-Popa, M, Iliescu, DA, Ghita, AC, Ghita, AM. Effects of cigarette smoking on sensorineural hearing impairment and age related macular degeneration. Tob Prev Cessat 2021;7:55CrossRefGoogle ScholarPubMed
Tao, L, Davis, R, Heyer, N, Yang, Q, Qiu, W, Zhu, L et al. Effect of cigarette smoking on noise-induced hearing loss in workers exposed to occupational noise in China. Noise Health 2013;15:6772Google ScholarPubMed
Farhadian, M, Aliabadi, M, Darvishi, E. Empirical estimation of the grades of hearing impairment among industrial workers based on new artificial neural networks and classical regression methods. Indian J Occup Environ Med 2015;19:84–9Google ScholarPubMed
Yankaskas, K. Prelude: noise-induced tinnitus and hearing loss in the military. Hear Res 2013;295:38CrossRefGoogle ScholarPubMed
Zare, S, Ghotbi-Ravandi, MR, ElahiShirvan, H, Ahsaee, MG, Rostami, M. Predicting and weighting the factors affecting workers' hearing loss based on audiometric data using C5 algorithm. Ann Glob Health 2019;85:88CrossRefGoogle ScholarPubMed