Hostname: page-component-55f67697df-xq6d9 Total loading time: 0 Render date: 2025-05-08T19:34:03.516Z Has data issue: false hasContentIssue false

Comparison of quality of life in vestibular schwannoma patients managed with observation, radiotherapy or microsurgery

Published online by Cambridge University Press:  16 April 2024

Jessica F Ball*
Affiliation:
Department of Otolaryngology, Head and Neck Surgery, Lister Hospital, Stevenage, UK
Jacob C M Low
Affiliation:
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
Anand V Kasbekar
Affiliation:
Nottingham University Hospitals NHS Trust & Hearing Sciences, University of Nottingham, Nottingham, UK
Tristram H Lesser
Affiliation:
Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
*
Corresponding author: Jessica F Ball; Email: [email protected]

Abstract

Objectives

In decision making regarding the management of vestibular schwannomas, alongside clinical outcomes, an understanding of patient reported health-related quality of life measures is key. Therefore, the aim of this research is to compare health-related quality of life in vestibular schwannoma patients treated with active observation, stereotactic radiotherapy and microsurgical excision.

Methods

A cross-sectional study of patients diagnosed with unilateral sporadic vestibular schwannomas between 1995 and 2015 at a specialist tertiary centre was conducted. Patients completed the Penn Acoustic Neuroma Quality of Life questionnaire and handicap inventories for dizziness, hearing and tinnitus.

Results

Of 234 patients, 136 responded (58.1 per cent). Management modality was: 86 observation, 23 stereotactic radiotherapy and 25 microsurgery. Females reported significantly worse dizziness; males reported significantly worse physical disability. Patients less than 65 years old reported significantly worse tinnitus and pain scores. Overall, quality of life was higher in the observation group.

Conclusion

Conservative management, where appropriate, is favourable with higher quality-of-life outcomes in this cohort. This must be weighed against the risks of a growing tumour.

Type
Main Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Jessica F Ball takes responsibility for the integrity of the content of the paper

Presented at BACO International Meeting, July 2018, Manchester, UK

References

Yoshimoto, Y. Systematic review of the natural history of vestibular schwannoma. J Neurosurg 2005;103:5963CrossRefGoogle ScholarPubMed
Paldor, I, Chen, AS, Kaye, AH. Growth rate of vestibular schwannoma. J Clin Neurosci 2016;32:18CrossRefGoogle ScholarPubMed
Carlson, ML, Lees, KA, Patel, NS, Lohse, CM, Neff, BA, Link, MJ et al. The clinical behavior of asymptomatic incidental vestibular schwannomas is similar to that of symptomatic tumors. Otol Neurotol 2016;37:1435–41CrossRefGoogle ScholarPubMed
Marinelli, JP, Lohse, CM, Grossardt, BR, Lane, JI, Carlson, ML. Rising incidence of sporadic vestibular schwannoma: true biological shift versus simply greater detection. Otol Neurotol 2020;41:813–47CrossRefGoogle ScholarPubMed
Jeyakumar, A, Seth, R, Brickman, TM, Dutcher, P. The prevalence and clinical course of patients with ‘incidental’ acoustic neuromas. Acta Otolaryngol 2007;127:1051–7CrossRefGoogle ScholarPubMed
Leong, SC, Lesser, TH. A United Kingdom survey of concerns, needs, and priorities reported by patients diagnosed with acoustic neuroma. Otol Neurotol 2015;36:486–90CrossRefGoogle ScholarPubMed
Reddy, CEE, Lewis-Jones, HG, Javadpour, M, Ryland, I, Lesser, THJ. Conservative management of vestibular schwannomas of 15 to 311 m mm intracranial diameter. J Laryngol Otol 2014;128:752–8CrossRefGoogle Scholar
Shaffer, BT, Cohen, MS, Bigelow, DC, Ruckenstein, MJ. Validation of a disease-specific quality-of-life instrument for acoustic neuroma: the Penn acoustic neuroma quality-of-life scale. Laryngoscope 2010;120:1646–54CrossRefGoogle ScholarPubMed
Myrseth, E, Møller, P, Wentzel-Larsen, T, Goplen, F, Lund-Johansen, M. Untreated vestibular schwannomas: vertigo is a powerful predictor for health-related quality of life. Neurosurgery 2006;59:6776Google ScholarPubMed
Jufas, N, Flanagan, S, Biggs, N, Chang, P, Fagan, P. Quality of life in vestibular schwannoma patients managed by surgical or conservative approaches. Otol Neurotol 2015;36:1245–54CrossRefGoogle ScholarPubMed
Gauden, A, Weir, P, Hawthorne, G, Kaye, A. Systematic review of quality of life in the management of vestibular schwannoma. J Clin Neurosci 2011;18:1573–84CrossRefGoogle ScholarPubMed
Soulier, G, van Leeuwen, BM, Putter, H, Jansen, JC, Malessy, MJA, van Bethem, PPG et al. Quality of life in 807 patients with vestibular schwannoma: comparing treatment modalities. Otolaryngol Head Neck Surg 2017;157:92–8CrossRefGoogle ScholarPubMed
Peris-Celda, M, Graffeo, CS, Perry, A, Kleinstern, G, Kerezoudis, P, Driscoll, CLW et al. Beyond the ABCs: hearing loss and quality of life in vestibular schwannoma. Mayo Clin Proc 2020;95:2420–8CrossRefGoogle ScholarPubMed
Newman, CW, Weinstein, BE, Jacobson, GP, Hug, GA. The hearing handicap inventory for adults: psychometric adequacy and audiometric correlates Ear Hear 1990;11:430–3CrossRefGoogle ScholarPubMed
Jacobson, GP, Newman, CW. The development of the dizziness handicap inventory. Arch Otolaryngol Head Neck Surg 1990;116:424–7CrossRefGoogle ScholarPubMed
Newman, CW, Jacobson, GP, Spitzer, JB. Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg 1996;122:143–8CrossRefGoogle ScholarPubMed
Newman, CW, Sandridge, SA, Jacobson, GP. Psychometric adequacy of the tinnitus handicap inventory (THI) for evaluating treatment outcome. J Am Acad Audiol 1998;9:153–60Google ScholarPubMed
Chweya, CM, Tombers, NM, Lohse, CM, Link, MJ, Carlson, ML. Disease-specific quality of life in vestibular schwannoma: a national cross-sectional study comparing microsurgery, radiosurgery, and observation. Otolaryngol Head Neck Surg 2021;164:639–44CrossRefGoogle ScholarPubMed
Neve, OM, Jansen, JC, Koot, RW, Ridder, M, van Bentham, PPG, Stiggelbout, AM et al. Long-term quality of life of vestibular schwannoma patients: a longitudinal analysis. Otolaryngol Head Neck Surg 2023;168:210–17CrossRefGoogle ScholarPubMed
Carlson, ML, Barnes, JH, Nassiri, A, Patel, NS, Tombers, NM, Lohse, CM et al. Prospective study of disease-specific quality-of-life in sporadic vestibular schwannoma comparing observation, radiosurgery, and microsurgery. Otol Neurotol 2021;42:e199208CrossRefGoogle ScholarPubMed
Lodder, WL, van der Laan, BFAM, Lesser, TH, Leong, SC. The impact of acoustic neuroma on long-term quality-of-life outcomes in the United Kingdom. Eur Arch Otorhinolaryngol 2018;275:709–17CrossRefGoogle ScholarPubMed
Miller, LE, Brant, JA, Chen, J, Kaufman, AC, Ruckenstein, MJ. Hearing and quality of life over time in vestibular schwannoma patients: observation compared to stereotactic radiosurgery. Otol Neurotol 2019;40:10941100CrossRefGoogle ScholarPubMed
Onoda, K, Ogasawara, Y, Hirokawa, Y, Sashida, R, Fujiwara, R, Wakamiya, T et al. Small vestibular schwannoma presented with trigeminal neuralgia: illustrative case. J Neurosurg Case Lessons 2022;4:CASE22274CrossRefGoogle ScholarPubMed
North, M, Weishaar, J, Nuru, M, Anderson, D, Leonetti, JP. Assessing surgical approaches for acoustic neuroma resection: do patients perceive a difference in quality-of-life outcomes? Otol Neurotol 2022;43:1245–51CrossRefGoogle ScholarPubMed
Jakubeit, T, Sturtz, S, Sow, D, Groß, W, Mosch, C, Patt, M et al. Single-fraction stereotactic radiosurgery versus microsurgical resection for the treatment of vestibular schwannoma: a systematic review and meta-analysis. Syst Rev 2022;11:265CrossRefGoogle ScholarPubMed
Saliba, J, Friedman, RA, Cueva, RA. Hearing preservation in vestibular schwannoma surgery. J Neurol Surg B Skull Base 2019;80:149–55Google ScholarPubMed
Ahsan, SF, Huq, F, Seidman, M, Taylor, A. Long-term hearing preservation after resection of vestibular schwannoma: a systematic review and meta-analysis. Otol Neurotol 2017;38:1505–11CrossRefGoogle ScholarPubMed
Balossier, A, Tuleasca, C, Delsanti, C, Troude, L, Tomassin, JM, Roche, PH et al. Long-term hearing outcome after radiosurgery for vestibular schwannoma: a systematic review and meta-analysis. Neurosurgery 2023;92:1130–41CrossRefGoogle ScholarPubMed
Stangerup, SE, Thomsen, J, Tos, M, Ceyé-Tomasen, P. Long-term hearing preservation in vestibular schwannoma. Otol Neurotol 2010;31:271–5CrossRefGoogle ScholarPubMed
Carlson, ML, Tombers, NM, Kerezoudis, P, Celda, MP, Lohse, CM, Link, MJ. Quality of life within the first 6 months of vestibular schwannoma diagnosis with implications for patient counseling. Otol Neurotol 2018;39:e1129–36CrossRefGoogle ScholarPubMed
Carlson, ML, Lohse, CM, Link, MJ, Tombers, NM, McCaslin, DL, Saoji, AA et al. Development and validation of a new disease-specific quality of life instrument for sporadic vestibular schwannoma: the Mayo Clinic Vestibular Schwannoma Quality of Life Index. J Neurosurg 2022;138:981–91Google Scholar