Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-29T20:51:58.422Z Has data issue: false hasContentIssue false

Time-dependent regularised 13-moment equations with Onsager boundary conditions in the linear regime

Published online by Cambridge University Press:  28 April 2025

Bo Lin
Affiliation:
Beijing Huairou Laboratory, Beijing 101400, PR China Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore
Haoxuan Wang
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore
Siyao Yang*
Affiliation:
Committee on Computational and Applied Mathematics, Department of Statistics, University of Chicago, Chicago, IL 60637, USA
Zhenning Cai
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore
*
Corresponding author: Siyao Yang, [email protected]

Abstract

We develop the time-dependent regularised 13-moment equations for general elastic collision models under the linear regime. Detailed derivation shows the proposed equations have super-Burnett order for small Knudsen numbers, and the moment equations enjoy a symmetric structure. A new modification of Onsager boundary conditions is proposed to ensure stability as well as the removal of undesired boundary layers. Numerical examples of one-dimensional channel flows is conducted to verified our model.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, A., Kushwaha, H.M. & Jadhav, R.S. 2019 Microscale Flow and Heat Transfer. Springer Cham.Google Scholar
Alekseenko, A., Martin, R. & Wood, A. 2022 Fast evaluation of the Boltzmann collision operator using data driven reduced order models. J. Comput. Phys. 470, 111526.CrossRefGoogle Scholar
Beckmann, A.F., Rana, A.S., Torrilhon, M. & Struchtrup, H. 2018 Evaporation boundary conditions for the linear R13 equations based on the Onsager theory. Entropy 20 (9), 680.CrossRefGoogle ScholarPubMed
Bhatnagar, P.L., Gross, E.P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.CrossRefGoogle Scholar
Bird, G.A. 1970 Direct simulation and the Boltzmann equation. Phys. Fluids 13 (11), 26762681.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation Of Gas Flows. Clarendon Press.CrossRefGoogle Scholar
Bobylev, A.V. 2006 Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations. J. Stat. Phys. 124 (2-4), 371399.CrossRefGoogle Scholar
Bünger, J., Christhuraj, E., Hanke, A. & Torrilhon, M. 2023 Structured derivation of moment equations and stable boundary conditions with an introduction to symmetric, trace-free tensors. Kinet. Relat. Models 16 (3), 458494.CrossRefGoogle Scholar
Cai, Z., Lin, B. & Lin, M. 2024 a A positive and moment-preserving Fourier spectral method. SIAM J. Numer. Anal. 62 (1), 273294.CrossRefGoogle Scholar
Cai, Z. & Torrilhon, M. 2015 Approximation of the linearized Boltzmann collision operator for hard-sphere and inverse-power-law models. J. Comput. Phys. 295, 617643.CrossRefGoogle Scholar
Cai, Z., Torrilhon, M. & Yang, S. 2024 b Linear regularized 13-moment equations with Onsager boundary conditions for general gas molecules. SIAM J. Appl. Math. 84 (1), 215245.CrossRefGoogle Scholar
Cai, Z. & Wang, Y. 2020 Regularized 13-moment equations for inverse power law models. J. Fluid Mech. 894, A12.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1970 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Claydon, R., Shrestha, A., Rana, A.S., Sprittles, J.E. & Lockerby, D.A. 2017 Fundamental solutions to the regularised 13-moment equations: efficient computation of three-dimensional kinetic effects. J. Fluid Mech. 833, R4.CrossRefGoogle Scholar
Dimarco, G., Loubère, R., Narski, J. & Rey, T. 2018 An efficient numerical method for solving the Boltzmann equation in multidimensions. J. Comput. Phys. 353, 4681.CrossRefGoogle Scholar
Dimarco, G. & Pareschi, L. 2014 Numerical methods for kinetic equations. Acta Numerica 23, 369520.CrossRefGoogle Scholar
Gamba, I.M., Haack, J.R., Hauck, C.D. & Hu, J. 2017 A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput. 39 (4), B658B674.CrossRefGoogle Scholar
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2 (4), 331407.CrossRefGoogle Scholar
Han, J., Ma, C., Ma, Z. & W., E. 2019 Uniformly accurate machine learning-based hydrodynamic models for kinetic equations. Proc. Natl Acad. Sci. USA 116 (44), 2198321991.CrossRefGoogle ScholarPubMed
Hu, Z., Yang, S. & Cai, Z. 2020 Flows between parallel plates: analytical solutions of regularized 13-moment equations for inverse-power-law models. Phys. Fluids 32 (12), 122007.CrossRefGoogle Scholar
Jadhav, R.S., Yadav, U. & Agrawal, A. 2023 OBurnett equations: thermodynamically consistent continuum theory beyond the Navier-Stokes regime. ASME J. Heat Mass Transfer 145 (6), 060801.CrossRefGoogle Scholar
Jiang, K., Sun, D. & Toh, K. 2013 Discrete geometry and optimization. In Solving Nuclear Norm Regularized and Semidefinite Matrix Least Squares Problems with Linear Equality Constraints, pp. 133162. Springer.Google Scholar
Jin, S. & Slemrod, M. 2001 Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103 (5/6), 10091033.CrossRefGoogle Scholar
Maxwell, J.C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. A 170, 231256.Google Scholar
Mieussens, L. 2000 Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162 (2), 429466.CrossRefGoogle Scholar
Müller, I., Reitebuch, D. & Weiss, W. 2003 Extended thermodynamics–consistent in order of magnitude. Contin. Mech. Thermodyn. 15 (2), 113146.CrossRefGoogle Scholar
Myong, R.S. 1999 Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Phys. Fluids 11 (9), 27882802.CrossRefGoogle Scholar
Öttinger, H.C. 2010 Thermodynamically admissible 13 moment equations from the Boltzmann equation. Phys. Rev. Lett. 104 (12), 120601.CrossRefGoogle ScholarPubMed
Rana, A., Torrilhon, M. & Struchtrup, H. 2013 A robust numerical method for the R13 equations of rarefied gas dynamics: application to lid driven cavity. J. Comput. Phys. 236, 169186.CrossRefGoogle Scholar
Rana, A.S., Mohammadzadeh, A. & Struchtrup, H. 2015 A numerical study of the heat transfer through a rarefied gas confined in a microcavity. Contin. Mech. Thermodyn. 27 (3), 433446.CrossRefGoogle Scholar
Sarna, N. & Torrilhon, M. 2018 On stable wall boundary conditions for the hermite discretization of the linearised Boltzmann equation. J. Stat. Phys. 170 (1), 101126.CrossRefGoogle Scholar
Singh, N. & Agrawal, A. 2016 Onsager’s-principle-consistent 13-moment transport equations. Phys. Rev. E 93 (6), 063111.CrossRefGoogle ScholarPubMed
Struchtrup, H. 2005 a Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3 (1), 221243.CrossRefGoogle Scholar
Struchtrup, H. 2005 b Macroscopic Transport Equations for Rarefied Gas Flows. Springer.CrossRefGoogle Scholar
Struchtrup, H., Beckmann, A., Rana, A.S. & Frezzotti, A. 2017 Evaporation boundary conditions for the R13 equations of rarefied gas dynamics. Phys. Fluids 29 (9), 092004.CrossRefGoogle Scholar
Struchtrup, H. & Torrilhon, M. 2003 Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15 (9), 26682680.CrossRefGoogle Scholar
Struchtrup, H. & Torrilhon, M. 2007 $h$ theorem, regularization, and boundary conditions for linearized 13 moment equations. Phys. Rev. Lett. 99 (1), 014502.CrossRefGoogle ScholarPubMed
Struchtrup, H. & Torrilhon, M. 2013 Regularized 13 moment equations for hard sphere molecules: linear bulk equations. Phys. Fluids 25 (5), 052001.CrossRefGoogle Scholar
Taheri, P. & Bahrami, M. 2012 Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels. Phys. Rev. E 86 (3), 036311.CrossRefGoogle ScholarPubMed
Theisen, L. & Torrilhon, M. 2021 fenicsR13: a tensorial mixed finite element solver for the linear R13 equations using the FEniCs computing platform. ACM Trans. Math. Softw. 47 (2), 129.CrossRefGoogle Scholar
Timokhin, M.Y., Struchtrup, H., Kokhanchik, A.A. & Bondar, Y.A. 2017 Different variants of R13 moment equations applied to the shock-wave structure. Phys. Fluids 29 (3), 037105.CrossRefGoogle Scholar
Torrilhon, M. & Sarna, N. 2017 Hierarchical Boltzmann simulations and model error estimation. J. Comput. Phys. 342, 6684.CrossRefGoogle Scholar
Torrilhon, M. & Struchtrup, H. 2008 Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227 (3), 19822011.CrossRefGoogle Scholar
Wu, L., Reese, J.M. & Zhang, Y. 2014 Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows. J. Fluid Mech. 746, 5384.CrossRefGoogle Scholar
Yadav, U., Jonnalagadda, A. & Agrawal, A. 2023 Third-order accurate 13-moment equations for non-continuum transport phenomenon. AIP Adv. 13 (4), 045311.CrossRefGoogle Scholar
Zhu, Y., Hong, L., Yang, Z. & Yong, W. 2015 Conservation-dissipation formalism of irreversible thermodynamics. J. Non-Equilib. Thermodyn. 40 (2), 6774.CrossRefGoogle Scholar