Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-28T15:04:34.594Z Has data issue: false hasContentIssue false

Scaling laws and mechanisms of hydrodynamic dispersion in porous media

Published online by Cambridge University Press:  19 December 2024

Yang Liu
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Han Xiao
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Tomás Aquino
Affiliation:
Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
Marco Dentz*
Affiliation:
Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
Moran Wang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We present a theory that quantifies the interplay between intrapore and interpore flow variabilities and their impact on hydrodynamic dispersion. The theory reveals that porous media with varying levels of structural disorder exhibit notable differences in interpore flow variability, characterised by the flux-weighted probability density function (PDF), $\hat {\psi }_\tau (\tau ) \sim \tau ^{-\theta -2}$, for advection times $\tau$ through conduits. These differences result in varying relative strengths of interpore and intrapore flow variabilities, leading to distinct scaling behaviours of the hydrodynamic dispersion coefficient $D_L$, normalised by the molecular diffusion coefficient $D_m$, with respect to the Péclet number $Pe$. Specifically, when $\hat {\psi }_\tau (\tau )$ exhibits a broad distribution of $\tau$ with $\theta$ in the range of $(0, 1)$, the dispersion undergoes a transition from power-law scaling, $D_L/D_m \sim Pe^{2-\theta }$, to linear scaling, $D_L/D_m \sim Pe$, and eventually to logarithmic scaling, $D_L/D_m \sim Pe\ln (Pe)$, as $Pe$ increases. Conversely, when $\tau$ is narrowly distributed or when $\theta$ exceeds 1, dispersion consistently follows a logarithmic scaling, $D_L/D_m \sim Pe\ln (Pe)$. The power-law and linear scaling occur when interpore variability predominates over intrapore variability, while logarithmic scaling arises under the opposite condition. These theoretical predictions are supported by experimental data and network simulations across a broad spectrum of porous media.

Type
JFM Rapids
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acharya, R.C., van Dijke, M.I.J., Sorbie, K.S., Van der Zee, S.E.A.T.M. & Leijnse, A. 2007 Quantification of longitudinal dispersion by upscaling Brownian motion of tracer displacement in a 3D pore-scale network model. Adv. Water Resour. 30 (2), 199213.CrossRefGoogle Scholar
Alim, K., Parsa, S., Weitz, D.A. & Brenner, M.P. 2017 Local pore size correlations determine flow distributions in porous media. Phys. Rev. Lett. 119 (14), 144501.CrossRefGoogle ScholarPubMed
de Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D. & Davy, P. 2013 Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110 (18), 184502.CrossRefGoogle ScholarPubMed
de Anna, P., Quaife, B., Biros, G. & Juanes, R. 2017 Prediction of the low-velocity distribution from the pore structure in simple porous media. Phys. Rev. Fluids 2 (12), 124103.CrossRefGoogle Scholar
Aquino, T. & Dentz, M. 2018 A coupled time domain random walk approach for transport in media characterized by broadly-distributed heterogeneity length scales. Adv. Water Resour. 119, 6069.CrossRefGoogle Scholar
Assouline, S., Tessier, D. & Bruand, A. 1998 A conceptual model of the soil water retention curve. Water Resour. Res. 34 (2), 223231.CrossRefGoogle Scholar
Bear, J. 2013 Dynamics of Fluids in Porous Media. Courier Corporation.Google Scholar
Bear, J. & Bachmat, Y. 1986 Macroscopic modelling of transport phenomena in porous media. 2. Applications to mass, momentum and energy transport. Transp. Porous Media 1, 241269.CrossRefGoogle Scholar
Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44 (2), RG2003.CrossRefGoogle Scholar
Bijeljic, B. & Blunt, M.J. 2006 Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42 (1), 2005WR004578.CrossRefGoogle Scholar
Bijeljic, B., Mostaghimi, P. & Blunt, M.J. 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107 (20), 204502.CrossRefGoogle ScholarPubMed
Bijeljic, B., Muggeridge, A.H. & Blunt, M.J. 2004 Pore-scale modeling of longitudinal dispersion. Water Resour. Res. 40 (11), W11501.CrossRefGoogle Scholar
Bizmark, N., Schneider, J., Priestley, R.D. & Datta, S.S. 2020 Multiscale dynamics of colloidal deposition and erosion in porous media. Sci. Adv. 6 (46), eabc2530.CrossRefGoogle ScholarPubMed
Bruderer, C. & Bernabé, Y. 2001 Network modeling of dispersion: transition from Taylor dispersion in homogeneous networks to mechanical dispersion in very heterogeneous ones. Water Resour. Res. 37 (4), 897908.CrossRefGoogle Scholar
De Arcangelis, L., Koplik, J., Redner, S. & Wilkinson, D. 1986 Hydrodynamic dispersion in network models of porous media. Phys. Rev. Lett. 57 (8), 996999.CrossRefGoogle Scholar
Delgado, J.M.P.Q. 2005 A critical review of dispersion in packed beds. Heat Mass Transfer 42 (4), 279310.CrossRefGoogle Scholar
Dentz, M., Cortis, A., Scher, H. & Berkowitz, B. 2004 Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27 (2), 155173.CrossRefGoogle Scholar
Dentz, M., Hidalgo, J.J. & Lester, D. 2023 Mixing in porous media: concepts and approaches across scales. Transp. Porous Media 146 (1-2), 553.CrossRefGoogle Scholar
Dentz, M., Icardi, M. & Hidalgo, J.J. 2018 Mechanisms of dispersion in a porous medium. J. Fluid Mech. 841, 851882.CrossRefGoogle Scholar
Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T. & Lester, D.R. 2016 Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1 (7), 074004.CrossRefGoogle Scholar
Di Federico, V. & Neuman, S.P. 1998 Transport in multiscale log conductivity fields with truncated power variograms. Water Resour. Res. 34 (5), 963973.CrossRefGoogle Scholar
Fatt, I. 1956 The network model of porous media. Trans. AIME 207 (1), 144181.CrossRefGoogle Scholar
Goirand, F., Le Borgne, T. & Sylvie, L. 2021 Network-driven anomalous transport is a fundamental component of brain microvascular dysfunction. Nat. Commun. 12 (1), 7295.CrossRefGoogle ScholarPubMed
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.CrossRefGoogle Scholar
Jha, R.K., Bryant, S.L. & Lake, L.W. 2011 Effect of diffusion on dispersion. SPE J. 16 (1), 6577.CrossRefGoogle Scholar
Johnston, P.R. 1998 Revisiting the most probable pore-size distribution in filter media: the gamma distribution. Filtr. Separat. 35 (3), 287292.CrossRefGoogle Scholar
Jurtz, N., Kraume, M. & Wehinger, G.D. 2019 Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev. Chem. Engng 35 (2), 139190.CrossRefGoogle Scholar
Kandhai, D., Hlushkou, D., Hoekstra, A.G., Sloot, P.M., Van As, H. & Tallarek, U. 2002 Influence of stagnant zones on transient and asymptotic dispersion in macroscopically homogeneous porous media. Phys. Rev. Lett. 88 (23), 234501.CrossRefGoogle ScholarPubMed
Koch, D.L. & Brady, J.F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427.CrossRefGoogle Scholar
Lehoux, A.P., Rodts, S., Faure, P., Michel, E., Courtier-Murias, D. & Coussot, P. 2016 Magnetic resonance imaging measurements evidence weak dispersion in homogeneous porous media. Phys. Rev. E 94 (5), 053107.CrossRefGoogle ScholarPubMed
Liu, Y., Gong, W., Xiao, H. & Wang, M. 2024 a Non-monotonic effect of compaction on longitudinal dispersion coefficient of porous media. J. Fluid Mech. 988, R2.CrossRefGoogle Scholar
Liu, Y., Gong, W., Xiao, H. & Wang, M. 2024 b A pore-scale numerical framework for solute transport and dispersion in porous media. Adv. Water Resour. 183, 104602.CrossRefGoogle Scholar
Liu, Y., Gong, W., Zhao, Y., Jin, X. & Wang, M. 2022 A pore-throat segmentation method based on local hydraulic resistance equivalence for pore-network modeling. Water Resour. Res. 58 (12), e2022WR033142.CrossRefGoogle Scholar
Maier, R.S., Kroll, D.M., Bernard, R.S., Howington, S.E., Peters, J.F. & Davis, H.T. 2000 Pore-scale simulation of dispersion. Phys. Fluids 12 (8), 20652079.CrossRefGoogle Scholar
Mehmani, Y. & Balhoff, M.T. 2015 Eulerian network modeling of longitudinal dispersion. Water Resour. Res. 51 (10), 85868606.CrossRefGoogle Scholar
Mostaghimi, P., Bijeljic, B. & Blunt, M.J. 2010 Simulation of flow and dispersion on pore-space images. SPE J. 17 (4), 11311141.CrossRefGoogle Scholar
Peng, X., Kulkarni, D., Huang, Y., Omasta, T.J., Ng, B., Zheng, Y., Wang, L., LaManna, J.M., Hussey, D.S. & Varcoe, J.R. 2020 Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nat. Commun. 11 (1), 3561.CrossRefGoogle ScholarPubMed
Pfannkuch, H.O. 1963 Contribution a I'etude des deplacement de fluids miscible dans un milieu poreux. Rev. Inst. Fr. Petrol. 18 (2), 215270.Google Scholar
Puyguiraud, A., Gouze, P. & Dentz, M. 2021 Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media. Phys. Rev. Lett. 126 (16), 164501.CrossRefGoogle ScholarPubMed
Saffman, P.G. 1959 A theory of dispersion in a porous medium. J. Fluid Mech. 6 (3), 321349.CrossRefGoogle Scholar
Sahimi, M. 2011 Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. John Wiley & Sons.CrossRefGoogle Scholar
Sahimi, M., Hughes, B.D., Scriven, L.E. & Davis, H.T. 1986 Dispersion in flow through porous media – I. One-phase flow. Chem. Engng Sci. 41 (8), 21032122.CrossRefGoogle Scholar
Sahimi, M. & Imdakm, A.O. 1988 The effect of morphological disorder on hydrodynamic dispersion in flow through porous media. J. Phys. A: Math. Gen. 21 (19), 3833.CrossRefGoogle Scholar
Sahimi, M. & Imdakm, A.O. 1991 Hydrodynamics of particulate motion in porous media. Phys. Rev. Lett. 66 (9), 1169.CrossRefGoogle ScholarPubMed
Van Milligen, B.P. & Bons, P.D. 2014 Simplified numerical model for clarifying scaling behavior in the intermediate dispersion regime in homogeneous porous media. Comput. Phys. Commun. 185 (12), 32913301.CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material
Download Liu et al. supplementary material(File)
File 9.6 MB