Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-27T16:56:29.378Z Has data issue: true hasContentIssue false

Reactive experimental control of turbulent jets

Published online by Cambridge University Press:  18 September 2024

Diego B.S. Audiffred*
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, Brazil
André V.G. Cavalieri
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, Brazil
Igor A. Maia
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, Brazil
Eduardo Martini
Affiliation:
Département Fluides, Thermique & Combustion, Institut Pprime, CNRS – Université de Poitiers – ISAE-ENSMA, 86360 Chasseneuil-du-Poitou, France
Peter Jordan
Affiliation:
Département Fluides, Thermique & Combustion, Institut Pprime, CNRS – Université de Poitiers – ISAE-ENSMA, 86360 Chasseneuil-du-Poitou, France
*
Email address for correspondence: [email protected]

Abstract

We present an experimental study of reactive control of turbulent jets, in which we target axisymmetric coherent structures, known to play a key role in the generation of sound. We first consider a forced jet, in which coherent structures are amplified above background levels, facilitating their detection, estimation and control. We then consider the more challenging case of an unforced jet. The linear control targets coherent structures in the region just downstream of the nozzle exit plane, where linear models are known to be appropriate for description of the lowest-order azimuthal modes of the turbulence. The control law is constructed in frequency space, based on empirically determined transfer functions. And the Wiener–Hopf formalism is used to enforce causality and to provide an optimal controller, as opposed to the sub-optimal control laws provided by simpler wave-cancellation methods. Significant improvements are demonstrated in the control of both forced and unforced jets. In the former case, order-of-magnitude reductions are achieved; and in the latter, turbulence levels are reduced by up to 60 %. The results open new perspectives for the control of turbulent flow at high Reynolds number.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alkislar, M.B., Krothapalli, A. & Butler, G.W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.Google Scholar
Audiffred, D.B.S., Cavalieri, A.V., Jordan, P., Martini, E. & Maia, I. 2023 a Wiener–Hopf Approach Applied for the Control of Forced Turbulent Jets. American Institute of Aeronautics and Astronautics.Google Scholar
Audiffred, D.B.S., Cavalieri, A.V.G., Brito, P.P.C. & Martini, E. 2023 b Experimental control of Tollmien–Schlichting waves using the Wiener–Hopf formalism. Phys. Rev. Fluids 8, 073902.Google Scholar
Belyaev, I.V., Bychkov, O.P., Zaitsev, M.Y., Kopiev, V.A., Kopiev, V.F., Ostrikov, N.N., Faranosov, G.A. & Chernyshev, S.A. 2018 Development of the strategy of active control of instability waves in unexcited turbulent jets. Fluid Dyn. 53 (3), 347360.Google Scholar
Bendat, J.S. & Piersol, A.G. 2010 Random Data, 4th edn. Wiley Series in Probability and Statistics. Wiley-Blackwell.Google Scholar
Borggaard, J., Gugercin, S. & Zietsman, L. 2016 Feedback stabilization of fluids using reduced-order models for control and compensator design. In 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7579–7585. IEEE.Google Scholar
Brito, P.P.C., Morra, P., Cavalieri, A.V.G., Araújo, T.B., Henningson, D.S. & Hanifi, A. 2021 Experimental control of Tollmien–Schlichting waves using pressure sensors and plasma actuators. Exp. Fluids 62 (2).Google Scholar
Cabell, R.H., Kegerise, M.A., Cox, D.E. & Gibbs, G.P. 2006 Experimental feedback control of flow-induced cavity tones. AIAA J. 44 (8), 18071816.Google Scholar
Castelain, T., Sunyach, M., Juvé, D. & Béra, J.-C. 2008 Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J. 46 (5), 10811087.Google Scholar
Cavalieri, A.V.G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.Google Scholar
Cavalieri, A.V.G., Jordan, P. & Lesshafft, L. 2019 Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev. 71 (2), 020802 .Google Scholar
Cavalieri, A.V.G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.Google Scholar
Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.Google Scholar
Daniele, V. & Lombardi, G. 2007 Fredholm factorization of Wiener–Hopf scalar and matrix kernels. Radio Sci. 42 (6), RS6S01.Google Scholar
European Commission 2011 Flightpath 2050: Europe's vision for aviation: maintaining global leadership and serving society's needs. Publications Office.Google Scholar
Fabbiane, N., Bagheri, S. & Henningson, D.S. 2017 Energy efficiency and performance limitations of linear adaptive control for transition delay. J. Fluid Mech. 810, 6081.Google Scholar
Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D.S. 2014 Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66 (6), 060801.Google Scholar
Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S. & Henningson, D.S. 2015 On the role of adaptivity for robust laminar flow control. J. Fluid Mech. 767, R1.Google Scholar
Faranosov, G., Bychkov, O.P., Kopiev, V., Kopiev, V.A., Moralev, I. & Kazansky, P. 2019 Plasma-based active closed-loop control of instability waves in unexcited turbulent jet. Part 1. Free jet. In 25th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Gao, C., Zhang, W., Kou, J., Liu, Y. & Ye, Z. 2017 Active control of transonic buffet flow. J. Fluid Mech. 824, 312351.Google Scholar
Ghiglieri, J. & Ulbrich, S. 2014 Optimal flow control based on POD and MPC and an application to the cancellation of Tollmien–Schlichting waves. Optim. Meth. Softw. 29 (5), 10421074.Google Scholar
Ginevsky, A.S., Vlasov, Y.V. & Karavosov, R.K. 2004 Reduction of turbulent engine noise. In Acoustic Control of Turbulent Jets, pp. 189208. Springer Berlin Heidelberg.Google Scholar
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.Google Scholar
Hervé, A., Sipp, D., Schmid, P.J. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 2658.Google Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (22), 473537.Google Scholar
Huff, D., Henderson, B., Berton, J. & Seidel, J. 2016 Perceived noise analysis for offset jets applied to commercial supersonic aircraft. In 54th AIAA Aerospace Sciences Meeting.Google Scholar
Huff, D.L. 2007 Noise reduction technologies for turbofan engines. Tech. Rep.. National Aeronautics and Space Administration, Cleveland, OH.Google Scholar
Hunter, C., Presz, W. & Reynolds, G. 2002 Thrust augmentation with mixer/ejector systems. In 40th AIAA Aerospace Sciences Meeting & Exhibit. American Institute of Aeronautics and Astronautics.Google Scholar
Högberg, M., Bewley, T.R. & Henningson, D.S. 2003 Linear feedback control and estimation of transition in plane channel flow. J. Fluid Mech. 481, 149175.Google Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.Google Scholar
Joshi, S.S., Speyer, J.L. & Kim, J. 1997 A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J. Fluid Mech. 332, 157184.Google Scholar
Juillet, F., McKeon, B. & Schmid, P.J. 2014 Experimental control of natural perturbations in channel flow. J. Fluid Mech. 752, 296309.Google Scholar
Juve, D., Sunyach, M. & Comte-Bellot, G. 1979 Filtered azimuthal correlations in the acoustic far field of a subsonic jet. AIAA J. 17 (1), 112113.Google Scholar
Juvet, P.J.D. 1987 Control of high Reynolds number round jets. Doctoral dissertation, Stanford University.Google Scholar
Karban, U., Martini, E. & Jordan, P. 2023 Modeling closed-loop control of installed jet noise using Ginzburg–Landau equation. Flow Turbul. Combust. 113, 721746.Google Scholar
Knowles, K. & Saddington, A.J. 2006 A review of jet mixing enhancement for aircraft propulsion applications. Proc. Inst. Mech. Engrs G: J. Aerosp. Engng 220 (2), 103127.Google Scholar
Kœnig, M., Sasaki, K., Cavalieri, A.V., Jordan, P. & Gervais, Y. 2016 Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms. J. Fluid Mech. 788, 358380.Google Scholar
Kopiev, V.F., et al. 2014 Instability wave control in turbulent jet by plasma actuators. J. Phys. D: Appl. Phys. 47 (50), 505201.Google Scholar
Kopiev, V.F., Belyaev, I.V., Zaytsev, M.Y., Kopiev, V.A. & Faranosov, G.A. 2013 Acoustic control of instability waves in a turbulent jet. Acoust. Phys. 59 (1), 1626.Google Scholar
Kopiev, V.F. & Faranosov, G.A. 2008 Control over the instability wave in terms of the two-dimensional model of a nozzle edge. Acoust. Phys. 54 (3), 319326.Google Scholar
Kotsonis, M., Shukla, R. & Pröbsting, S. 2015 Control of natural Tollmien–Schlichting waves using dielectric barrier discharge plasma actuators. Intl J. Flow Control 7, 3754.Google Scholar
Lajús, F.C., Sinha, A., Cavalieri, A.V.G., Deschamps, C.J. & Colonius, T. 2019 Spatial stability analysis of subsonic corrugated jets. J. Fluid Mech. 876, 766791.Google Scholar
Lau, J., Fisher, M. & Fuchs, H. 1972 The intrinsic structure of turbulent jets. J. Sound Vib. 22 (4), 379406.Google Scholar
Laurendeau, E., Jordan, P., Bonnet, J., Delville, J., Parnaudeau, P. & Lamballais, E. 2008 Subsonic jet noise reduction by fluidic control: the interaction region and the global effect. Phys. Fluids 20 (10), 101519.Google Scholar
Leylekian, L., Lebrun, M. & Lempereur, P. 2014 An overview of aircraft noise reduction technologies. Aerosp. Lab J. 7 (1).Google Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A: Math. Phys. Sci. 211 (1107), 564587.Google Scholar
Maia, I.A., Jordan, P. & Cavalieri, A.V.G. 2022 Wave cancellation in jets with laminar and turbulent boundary layers: the effect of nonlinearity. Phys. Rev. Fluids 7, 033903.Google Scholar
Maia, I.A., Jordan, P., Cavalieri, A.V.G., Martini, E., Sasaki, K. & Silvestre, F.J. 2021 Real-time reactive control of stochastic disturbances in forced turbulent jets. Phys. Rev. Fluids 6, 123901.Google Scholar
Martinelli, F. 2009 Feedback control of turbulent wall flows. PhD thesis, Politecnico di Milano, Milão.Google Scholar
Martini, E., Jung, J., Cavalieri, A.V., Jordan, P. & Towne, A. 2022 Resolvent-based tools for optimal estimation and control via the Wiener–Hopf formalism. J. Fluid Mech. 937, A19.Google Scholar
Maury, R., Koenig, M., Cattafesta, L., Jordan, P. & Delville, J. 2012 Extremum-seeking control of jet noise. Intl J. Aeroacoust. 11 (3–4), 459473.Google Scholar
Michalke, A. 1983 Some remarks on source coherence affecting jet noise. J. Sound Vib. 87 (1), 117.Google Scholar
Mollo-Christensen, E. 1967 Jet noise and shear flow instability seen from an experimenter's viewpoint. J. Appl. Mech. 34 (1), 17.Google Scholar
Moore, C.J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80 (2), 321367.Google Scholar
Morra, P., Sasaki, K., Hanifi, A., Cavalieri, A.V.G. & Henningson, D.S. 2020 A realizable data-driven approach to delay bypass transition with control theory. J. Fluid Mech. 883, A33.Google Scholar
Morris, P.J. & McLaughlin, D.K. 2019 Noise and noise reduction in supersonic jets. In Flinovia – Flow Induced Noise and Vibration Issues and Aspects II (ed. E. Ciappi, S. De Rosa, F. Franco, J.-L. Guyader, S.A. Hambric, R.C.K. Leung & A.D. Hanford), pp. 85–96. Springer International Publishing.Google Scholar
Noble, B. 1958 Method Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations. International Series of Monographs in Pure and Applies Mathematicss, vol. 7. Pergamon Press.Google Scholar
Parezanović, V., et al. 2014 Mixing layer manipulation experiment: from open-loop forcing to closed-loop machine learning control. Flow Turbul. Combust. 94 (1), 155173.Google Scholar
Pouryoussefi, S.G., Mirzaei, M., Alinejad, F. & Pouryoussefi, S.M. 2016 Experimental investigation of separation bubble control on an iced airfoil using plasma actuator. Appl. Therm. Engng 100, 13341341.Google Scholar
Saiyed, N., Bridges, J. & Mikkelsen, K. 2000 Acoustics and thrust of separate-flow exhaust nozzles with mixing devices for high-bypass-ratio engines. In 6th Aeroacoustics Conference and Exhibit, Lahaina. American Institute of Aeronautics and Astronautics.Google Scholar
Samimy, M., Adamovich, I., Webb, B., Kastner, J., Hileman, J., Keshav, S. & Palm, P. 2004 Development and characterization of plasma actuators for high-speed jet control. Exp. Fluids 37 (4), 577588.Google Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.Google Scholar
Samimy, M., Webb, N., Esfahani, A. & Leahy, R. 2023 Perturbation-based active flow control in overexpanded to underexpanded supersonic rectangular twin jets. J. Fluid Mech. 959, A13.Google Scholar
Sanfilippo, D. & Valle, A. 2013 Feedback systems: an analytical framework. Comput. Music J. 37 (2), 1227.Google Scholar
Sasaki, K., Morra, P., Cavalieri, A.V.G., Hanifi, A. & Henningson, D.S. 2019 On the role of actuation for the control of streaky structures in boundary layers. arXiv:1902.04923Google Scholar
Sasaki, K., Morra, P., Fabbiane, N., Cavalieri, A.V., Hanifi, A. & Henningson, D.S. 2018 On the wave-cancelling nature of boundary layer flow control. Theor. Comput. Fluid Dyn. 32 (5), 593616.Google Scholar
Schmid, P.J. & Sipp, D. 2016 Linear control of oscillator and amplifier flows. Phys. Rev. Fluids 1, 040501.Google Scholar
Seiner, J. & Krejsa, E. 1989 Supersonic jet noise and the high speed civil transport. In AIAA, ASME, SAE, and ASEE, 25th Joint Propulsion Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D.S. 2013 Transition delay in a boundary layer flow using active control. J. Fluid Mech. 731, 288311.Google Scholar
Shaqarin, T., Noack, B.R. & Morzyński, M. 2018 The need for prediction in feedback control of a mixing layer. Fluid Dyn. Res. 50 (6), 065514.Google Scholar
Shaw, L. & Northcraft, S. 1999 Closed loop active control for cavity acoustics. In 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, Bellevue. American Institute of Aeronautics and Astronautics.Google Scholar
Sinha, A., Gudmundsson, K., Xia, H. & Colonius, T. 2016 Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 3663.Google Scholar
Smith, L.L., Majamaki, A.J., Lam, I.T., Delabroy, O., Karagozian, A.R., Marble, F.E. & Smith, O.I. 1997 Mixing enhancement in a lobed injector. Phys. Fluids 9 (3), 667678.Google Scholar
Tam, C., Golebiowski, M. & Seiner, J. 1996 On the two components of turbulent mixing noise from supersonic jets. In Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Tam, C.K.W., Viswanathan, K., Ahuja, K.K. & Panda, J. 2008 The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253292.Google Scholar
Tide, P.S. & Srinivasan, K. 2009 Novel chevron nozzle concepts for jet noise reduction. Proc. Inst. Mech. Engrs G: J. Aerosp. Engng 223 (1), 5167.Google Scholar
Wang, J. & Feng, L. 2018 Synthetic jet. In Flow Control Techniques and Applications. Cambridge Aerospace Series, pp. 168305. Cambridge University Press.Google Scholar
Wei, M. & Freund, J.B. 2005 A noise-controlled free shear flow. J. Fluid Mech. 546 (1), 123.Google Scholar
Wirt, L.S. 1966 Gas turbine exhaust noise and its attenuation. SAE Trans. 74, 762784.Google Scholar
Zaman, K. 2010 Subsonic jet noise reduction by microjets – a parametric study. Intl J. Aeroacoust. 9 (6), 705732.Google Scholar
Zhou, Y., Du, C., Mi, J. & Wang, X.W. 2012 Turbulent round jet control using two steady minijets. AIAA J. 50 (3), 736740.Google Scholar
Zhou, Y., Fan, D., Zhang, B., Li, R. & Noack, B.R. 2020 Artificial intelligence control of a turbulent jet. J. Fluid Mech. 897, A27.Google Scholar
Zich, R. & Daniele, V. 2014 The Wiener–Hopf Method in Electromagnetics. Electromagnetic Waves Series. Institution of Engineering and Technology.Google Scholar
Zigunov, F., Sellappan, P. & Alvi, F.S. 2022 Reduction of noise in cold and hot supersonic jets using active flow control guided by a genetic algorithm. J. Fluid Mech. 952, A40.Google Scholar