Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-29T01:44:28.097Z Has data issue: false hasContentIssue false

Ordinal pattern-based analysis of an opposition-controlled turbulent channel flow

Published online by Cambridge University Press:  26 November 2024

Ryo Iseki
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
Hiroshi Gotoda
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
Yusuke Nabae*
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
*
Email address for correspondence: [email protected]

Abstract

We conduct a numerical study on the drag-reduction mechanism of an opposition- controlled turbulent channel flow from the viewpoint of a symbolic dynamics approach. The effect of the virtual wall formed by the opposition control is maximised at the location of the detection plane $y_d^+ \approx 10$. At this wall-normal location, the local link strength of the self-loop of network nodes representing the negative correlation pattern between the streamwise and wall-normal velocity fluctuations is maximised in the uncontrolled flow. In the controlled case, the multiscale complexity–entropy causality plane and the spatial permutation entropy at $y_d^+ \approx 10$ indicate that the drag-reduction effect is attributed to the reduction of the region where streaks actively coalesce and separate and the suppression of the regeneration cycle in the region near the wall.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

del Álamo, J.C., Jiménez, J., Zandonade, P. & Moser, R.D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Amigó, J.M. 2010 Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That. Springer Science & Business Media.CrossRefGoogle Scholar
Amigó, J.M., Zambrano, S. & Sanjuán, M.A.F. 2007 True and false forbidden patterns in deterministic and random dynamics. Europhys. Lett. 79 (5), 50001.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J.L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.CrossRefGoogle Scholar
Bae, H.J. & Lee, M. 2021 Life cycle of streaks in the buffer layer of wall-bounded turbulence. Phys. Rev. Fluids 6, 064603.CrossRefGoogle Scholar
Bandt, C. & Pompe, B. 2002 Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102.CrossRefGoogle ScholarPubMed
Caballero-Pintado, V., Matilla-Garcia, M. & Marin, M.R. 2018 Symbolic recurrence plots to analyze dynamical systems. Chaos 28, 063112.CrossRefGoogle ScholarPubMed
Cavalieri, A.V.G. 2021 Structure interactions in a reduced-order model for wall-bounded turbulence. Phys. Rev. Fluids 6 (3), 034610.CrossRefGoogle Scholar
Cavalieri, A.V.G. & Nogueira, P.A.S. 2022 Reduced-order Galerkin models of plane Couette flow. Phys. Rev. Fluids 7 (10), L102601.CrossRefGoogle Scholar
Cavalieri, A.V.G., Rempel, E.L. & Nogueira, P.A.S. 2022 Transition to chaos in a reduced-order model of a shear layer. J. Fluid Mech. 932, A43.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.CrossRefGoogle Scholar
Chowdhuri, S., Iacobello, G. & Banerjee, T. 2021 Visibility network analysis of large-scale intermittency in convective surface layer turbulence. J. Fluid Mech. 925, A38.CrossRefGoogle Scholar
Chung, Y.M. & Talha, T. 2011 Effectiveness of active flow control for turbulent skin friction drag reduction. Phys. Fluids 23 (2), 025102.CrossRefGoogle Scholar
Dacome, G., Mörsch, R., Kotsonis, M. & Baars, W.J. 2024 Opposition flow control for reducing skin-friction drag of a turbulent boundary layer. Phys. Rev. Fluids 9 (6), 064602.CrossRefGoogle Scholar
De, S., Gupta, S., Unni, V.R., Ravindran, R., Kasthuri, P., Marwan, N., Kurths, J. & Sujith, R.I. 2023 Study of interaction and complete merging of binary cyclones using complex networks. Chaos 33, 013129.CrossRefGoogle ScholarPubMed
Dukowicz, J.K. & Dvinsky, A.S. 1992 Approximate factorization as a high order splitting for the implicit incompressible flow equations. J. Comput. Phys. 102, 336347.CrossRefGoogle Scholar
Eckhardt, B. & Mersmann, A. 1999 Transition to turbulence in a shear flow. Phys. Rev. E 60 (1), 509.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Hasegawa, Y. 2024 Turbulent drag reduction by streamwise traveling waves of wall-normal forcing. Annu. Rev. Fluid Mech. 56, 6990.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73L76.CrossRefGoogle Scholar
Fukagata, K., Kasagi, N. & Koumoutsakos, P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703.CrossRefGoogle Scholar
Gao, Z. & Jin, N. 2009 Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks. Phys. Rev. E 79, 066303.CrossRefGoogle ScholarPubMed
Gotoda, H., Kobayashi, H. & Hayashi, K. 2017 a Chaotic dynamics of a swirling flame front instability generated by a change in gravitational orientation. Phys. Rev. E 95, 022201.CrossRefGoogle ScholarPubMed
Gotoda, H., Pradas, M. & Kalliadasis, S. 2017 b Chaotic versus stochastic behavior in active-dissipative nonlinear systems. Phys. Rev. Fluids 2, 124401.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hammond, E.P., Bewley, T.R. & Moin, P. 1998 Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys. Fluids 10, 24212423.CrossRefGoogle Scholar
Hasegawa, Y., Quadrio, M. & Frohnapfel, B. 2014 Numerical simulation of turbulent duct flows with constant power input. J. Fluid Mech. 750, 191209.CrossRefGoogle Scholar
Hayashi, K., Gotoda, H. & Gentili, P.L. 2016 Probing and exploiting the chaotic dynamics of a hydrodynamic photochemical oscillator to implement all the basic binary logic functions. Chaos 26, 053102.CrossRefGoogle ScholarPubMed
Holmes, P., Lumley, J.L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Hwang, J. & Lee, J.H. 2022 Meandering features of wall-attached structures in turbulent boundary layer. Phys. Rev. Fluids 7, 114603.CrossRefGoogle Scholar
Hwang, J. & Sung, H.J. 2018 Wall-attached structures of velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 856, 958983.CrossRefGoogle Scholar
Iacobello, G., Ridolfi, L. & Scarsoglio, S. 2021 Large-to-small scale frequency modulation analysis in wall-bounded turbulence via visibility networks. J. Fluid Mech. 918, A13.CrossRefGoogle Scholar
Iacobello, G., Scarsoglio, S., Kuerten, J.G.M. & Ridolfi, L. 2018 Spatial characterization of turbulent channel flow via complex networks. Phys. Rev. E 98, 013107.CrossRefGoogle ScholarPubMed
Kasagi, N., Suzuki, Y. & Fukagata, K. 2009 Microelectromechanical systems–based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231251.CrossRefGoogle Scholar
Kawata, T. & Tsukahara, T. 2021 Scale interactions in turbulent plane Couette flows in minimal domains. J. Fluid Mech. 911, A55.CrossRefGoogle Scholar
Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids 15, 10931105.CrossRefGoogle Scholar
Kobayashi, W., Gotoda, H., Kandani, S., Ohmichi, Y. & Matsuyama, S. 2019 Spatiotemporal dynamics of turbulent coaxial jet analyzed by symbolic information-theory quantifiers and complex-network approach. Chaos 29, 123110.CrossRefGoogle ScholarPubMed
Kulp, C.W. & Zunino, L. 2014 Discriminating chaotic and stochastic dynamics through the permutation spectrum test. Chaos 24, 033116.CrossRefGoogle ScholarPubMed
Lacasa, L., Luque, B., Ballesteros, F., Luque, J. & Nuno, J.C. 2008 From time series to complex networks: the visibility graph. Proc. Natl Acad. Sci. 105, 49724975.CrossRefGoogle ScholarPubMed
Li, Q. & Zuntao, F. 2014 Permutation entropy and statistical complexity quantifier of nonstationarity effect in the vertical velocity records. Phys. Rev. E 89, 012905.CrossRefGoogle ScholarPubMed
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.CrossRefGoogle Scholar
Lozano-Durán, A., Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.CrossRefGoogle Scholar
Mamori, H., Nabae, Y., Fukuda, S. & Gotoda, H. 2023 Dynamic state of low-Reynolds-number turbulent channel flow. Phys. Rev. E 108, 025105.CrossRefGoogle ScholarPubMed
Marwan, N., Romano, M.C., Thiel, M. & Kurths, J. 2007 Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237329.CrossRefGoogle Scholar
McCullough, M., Sakellariou, K., Stemler, T. & Small, M. 2016 Counting forbidden patterns in irregularly sampled time series. I. The effects of under-sampling, random depletion, and timing jitter. Chaos 26, 123103.CrossRefGoogle ScholarPubMed
McCullough, M., Small, M., Stemler, T. & Iu, H.H.-C. 2015 Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. Chaos 25, 053101.CrossRefGoogle ScholarPubMed
Meerschaert, M.M., Sabzikar, F., Phanikumar, M.S. & Zeleke, A. 2014 Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech.: Theory Exp. P09023.CrossRefGoogle Scholar
Moehlis, J., Faisst, H. & Eckhardt, B. 2004 A low-dimensional model for turbulent shear flows. New J. Phys. 6 (1), 56.CrossRefGoogle Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111.CrossRefGoogle Scholar
Morinishi, Y., Lund, T.S., Vasilyev, O.V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.CrossRefGoogle Scholar
Murayama, S., Kinugawa, H., Tokuda, I.T. & Gotoda, H. 2018 Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory. Phys. Rev. E 97, 022223.CrossRefGoogle ScholarPubMed
Nabae, Y. & Fukagata, K. 2024 Theoretical and numerical analyses of turbulent plane Couette flow controlled using uniform blowing and suction. Intl J. Heat Fluid Flow 106, 109286.CrossRefGoogle Scholar
Nabae, Y., Kawai, K. & Fukagata, K. 2020 Prediction of drag reduction effect by streamwise traveling wave-like wall deformation in turbulent channel flow at practically high Reynolds numbers. Intl J. Heat Fluid Flow 82, 108550.CrossRefGoogle Scholar
Nomi, Y., Gotoda, H., Kandani, S. & Almarcha, C. 2021 Complex network analysis of the gravity effect on premixed flames propagating in a Hele-Shaw cell. Phys. Rev. E 103, 022218.CrossRefGoogle Scholar
Ricco, P., Skote, M. & Leschziner, M.A. 2021 A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog. Aerosp. Sci. 123, 100713.CrossRefGoogle Scholar
Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A. & Fuentes, M.A. 2007 Distinguishing noise from chaos. Phys. Rev. Lett. 99, 154102.CrossRefGoogle ScholarPubMed
Sanghi, S. & Aubry, N. 1993 Mode interaction models for near-wall turbulence. J. Fluid Mech. 247, 455488.CrossRefGoogle Scholar
Small, M. 2013 Complex networks from time series: capturing dynamics. Proceedings of the 2013 IEEE International Symposium on Circuits and Systems, pp. 2509–2512.Google Scholar
Smith, C.R. & Metzler, S.P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.CrossRefGoogle Scholar
Spalart, P.R., Moser, R.D. & Rogers, M.M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.CrossRefGoogle Scholar
Stroh, A., Frohnapfel, B., Schlatter, P. & Hasegawa, Y. 2015 A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27 (7), 075101.CrossRefGoogle Scholar
Taira, K., Nair, A.G. & Brunton, S.L. 2016 Network structure of two-dimensional decaying isotropic turbulence. J. Fluid Mech. 795, R2.CrossRefGoogle Scholar
Takagi, K., Gotoda, H., Tokuda, I.T. & Miyano, T. 2017 Nonlinear dynamics of a buoyancy-induced turbulent fire. Phys. Rev. E 96, 052223.CrossRefGoogle ScholarPubMed
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Wang, Y.X., Choi, K.-S., Gaster, M., Atkin, C., Borodulin, V. & Kachanov, Y. 2022 Opposition control of turbulent spots. J. Fluid Mech. 943, A3.CrossRefGoogle Scholar
Weck, P.J., Schaffner, D.A., Brown, M.R. & Wicks, R.T. 2015 Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. Phys. Rev. E 91, 023101.CrossRefGoogle ScholarPubMed
Willmarth, W.W. & Lu, S.S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 6592.CrossRefGoogle Scholar
Zhang, J. & Small, M. 2006 Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701.CrossRefGoogle ScholarPubMed
Zhang, J., Zhou, J., Tang, M., Guo, H., Small, M. & Zou, Y. 2017 a Constructing ordinal partition transition networks from multivariate time series. Sci. Rep. 7, 7795.CrossRefGoogle ScholarPubMed
Zhang, W., Liu, P., Guo, H. & Wang, J. 2017 b Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers. Phys. Rev. E 96, 052215.CrossRefGoogle Scholar
Zunino, L. & Ribeiro, H.V. 2016 Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane. Chaos Solitons Fractals 91, 679688.CrossRefGoogle Scholar
Zunino, L., Soriano, M.C. & Rosso, O.A. 2012 Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys. Rev. E 86, 046210.CrossRefGoogle ScholarPubMed