Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-29T12:21:19.286Z Has data issue: false hasContentIssue false

The minimal seed for transition to convective turbulence in heated pipe flow

Published online by Cambridge University Press:  16 October 2024

Shijun Chu*
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
Ashley P. Willis
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
Elena Marensi
Affiliation:
Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK
*
Email address for correspondence: [email protected]

Abstract

It is well known that buoyancy suppresses, and can even laminarise, turbulence in upward heated pipe flow. Heat transfer seriously deteriorates in this case. A new direct numerical simulation model is established to simulate flow-dependent heat transfer in an upward heated pipe. The model shows good agreement with experimental results. Three flow states are simulated for different values of the buoyancy parameter $C$: shear turbulence, laminarisation and convective turbulence. The latter two regimes correspond to the heat transfer deterioration regime and the heat transfer recovery regime, respectively (Jackson & Li 2002; Bae et al., Phys. Fluids, vol. 17, issue 10, 2005; Zhang et al., Appl. Energy, vol. 269, 2020, 114962). We confirm that convective turbulence is driven by a linear instability (Su & Chung, J. Fluid Mech., vol. 422, 2000, pp. 141–166) and that the deteriorated heat transfer within convective turbulence is related to a lack of rolls near the wall, which leads to weak mixing between the flow near the wall and the centre of the pipe. Having surveyed the fundamental properties of the system, we perform a nonlinear non-modal stability analysis, which seeks the minimal perturbation that triggers a transition from the laminar state. Given the differences between shear and convective turbulence, we aim to determine how the nonlinear optimal (NLOP) changes as the buoyancy parameter $C$ increases. We find that at first, the NLOP becomes thinner and closer to the wall. Most importantly, the critical initial energy $E_0$ required to trigger turbulence keeps increasing, implying that attempts to trigger it artificially may not be an efficient means to improve heat transfer at larger $C$. At $C=6$, a new type of NLOP is discovered, capable of triggering convective turbulence from lower energy, but over a longer time. It is active only in the centre of the pipe. We next compare the transition processes, from linear instability and by the nonlinear non-modal excitation. At $C=4$, linear instability leads to a state that approaches a travelling wave solution or periodic solutions, while the minimal seed triggers shear turbulence before decaying to convective turbulence. Deeper into the parameter space for convective turbulence, at $C=6$, the new nonlinear optimal triggers convective turbulence directly. Detailed analysis of the periodic solution at $C=4$ reveals three stages: growth of the unstable eigenfunction, the formation of streaks, and the decay of the streaks. The stages of the cycle correspond to changes in the linear instability of the turbulent mean velocity profile. Unlike the self-sustaining process for classical shear flows, where the streak is disrupted via instability, here, decay of the streak is more closely linked to suppression of the linear instability of the mean flow, and hence suppression of the rolls. Flow visualisations at $C$ up to $10$ also show similar processes, suggesting that the convective turbulence in the heat transfer recovery regime is sustained by these three typical processes.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ackerman, J.W. 1970 Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes. Trans. ASME J. Heat Transfer 92, 490497.CrossRefGoogle Scholar
Avila, K., Moxey, D., De Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.CrossRefGoogle ScholarPubMed
Avila, M., Barkley, D. & Hof, B. 2023 Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech. 55, 575602.CrossRefGoogle Scholar
Bae, J.H., Yoo, J.Y. & Choi, H. 2005 Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids 17 (10), 105104.CrossRefGoogle Scholar
Bae, J.H., Yoo, J.Y., Choi, H. & McEligot, D.M. 2006 Effects of large density variation on strongly heated internal air flows. Phys. Fluids 18 (7), 075102.CrossRefGoogle Scholar
Carr, A.D., Connor, M.A. & Buhr, H.O. 1973 Velocity, temperature, and turbulence measurements in air for pipe flow with combined free and forced convection. Trans. ASME J. Heat Transfer 95, 445452.CrossRefGoogle Scholar
Celataa, G.P., Dannibale, F., Chiaradia, A. & Cumo, M. 1998 Upflow turbulent mixed convection heat transfer in vertical pipes. Intl J. Heat Mass Transfer 41 (24), 40374054.CrossRefGoogle Scholar
Chen, Y.-C. & Chung, J.N. 1996 The linear stability of mixed convection in a vertical channel flow. J. Fluid Mech. 325, 2951.CrossRefGoogle Scholar
Chen, Y.-C. & Chung, J.N. 2002 A direct numerical simulation of K- and H-type flow transition in a heated vertical channel. Phys. Fluids 14 (9), 33273346.CrossRefGoogle Scholar
Cherubini, S. & De Palma, P. 2013 Nonlinear optimal perturbations in a Couette flow: bursting and transition. J. Fluid Mech. 716, 251279.CrossRefGoogle Scholar
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.CrossRefGoogle Scholar
Chu, X., Laurien, E. & McEligot, D.M. 2016 Direct numerical simulation of strongly heated air flow in a vertical pipe. Intl J. Heat Mass Transfer 101, 11631176.CrossRefGoogle Scholar
Duguet, Y., Willis, A.P. & Kerswell, R.R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
Eckhardt, B., Schneider, T.M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.CrossRefGoogle Scholar
Guo, Z.-Y., Zhu, H.-Y. & Liang, X.-G. 2007 Entransy – a physical quantity describing heat transfer ability. Intl J. Heat Mass Transfer 50 (13–14), 25452556.CrossRefGoogle Scholar
Hall, W.B. & Jackson, J.D. 1969 Laminarization of a turbulent pipe flow by buoyancy forces. In 11th ASME-AIChE National Heat Transfer Conference, Minneapolis, MN, Paper 69-HT-55. ASME.Google Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hanratty, T.J., Rosen, E.M. & Kabel, R.L. 1958 Effect of heat transfer on flow field at low Reynolds numbers in vertical tubes. Ind. Engng Chem. 50 (5), 815820.CrossRefGoogle Scholar
He, J., Tian, R., Jiang, P.X. & He, S. 2021 Turbulence in a heated pipe at supercritical pressure. J. Fluid Mech. 920, A45.CrossRefGoogle Scholar
He, S., He, K. & Seddighi, M. 2016 Laminarisation of flow at low Reynolds number due to streamwise body force. J. Fluid Mech. 809, 3171.CrossRefGoogle Scholar
Herbert, T. 1983 Secondary instability of plane channel flow to subharmonic three-dimensional disturbances. Phys. Fluids 26 (4), 871874.CrossRefGoogle Scholar
Hof, B., De Lozar, A., Avila, M., Tu, X. & Schneider, T.M. 2010 Eliminating turbulence in spatially intermittent flows. Science 327 (5972), 14911494.CrossRefGoogle ScholarPubMed
Hof, B., Van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.CrossRefGoogle ScholarPubMed
Jackson, J.D. 2013 Fluid flow and convective heat transfer to fluids at supercritical pressure. Nucl. Engng Des. 264, 2440.CrossRefGoogle Scholar
Jackson, J.D. & Li, J. 2002 Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow. In International Heat Transfer Conference12, August 18–23, 2002, Grenoble, France. ASME.CrossRefGoogle Scholar
Kawahara, G. 2005 Laminarization of minimal plane Couette flow: going beyond the basin of attraction of turbulence. Phys. Fluids 17 (4), 041702.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & Van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.CrossRefGoogle Scholar
Kemeny, G.A. & Somers, E.V. 1962 Combined free and forced-convective flow in vertical circular tubes – experiments with water and oil. Trans. ASME C: J. Heat Transfer 108, 339346.CrossRefGoogle Scholar
Kerswell, R.R. & Tutty, O.R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.CrossRefGoogle Scholar
Khandelwal, M.K. & Bera, P. 2015 Weakly nonlinear stability analysis of non-isothermal Poiseuille flow in a vertical channel. Phys. Fluids 27 (6), 064103.CrossRefGoogle Scholar
Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12 (1), 134.CrossRefGoogle Scholar
Kühnen, J., Song, B., Scarselli, D., Budanur, N.B., Riedl, M., Willis, A.P., Avila, M. & Hof, B. 2018 Destabilizing turbulence in pipe flow. Nat. Phys. 14 (4), 386390.CrossRefGoogle Scholar
Lellep, M., Prexl, J., Eckhardt, B. & Linkmann, M. 2022 Interpreted machine learning in fluid dynamics: explaining relaminarisation events in wall-bounded shear flows. J. Fluid Mech. 942, A2.CrossRefGoogle Scholar
Marensi, E., He, S. & Willis, A.P. 2021 Suppression of turbulence and travelling waves in a vertical heated pipe. J. Fluid Mech. 919, A17.CrossRefGoogle Scholar
Marensi, E., Willis, A.P. & Kerswell, R.R. 2019 Stabilisation and drag reduction of pipe flows by flattening the base profile. J. Fluid Mech. 863, 850875.CrossRefGoogle Scholar
McEligot, D.M., Coon, C.W. & Perkins, H.C. 1970 Relaminarization in tubes. Intl J. Heat Mass Transfer 13 (2), 431433.CrossRefGoogle Scholar
Motoki, S., Kawahara, G. & Shimizu, M. 2018 Optimal heat transfer enhancement in plane Couette flow. J. Fluid Mech. 835, 11571198.CrossRefGoogle Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Orr, W.M. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 27, pp. 69–138. JSTOR.Google Scholar
Parlatan, Y., Todreas, N.E. & Driscoll, M.J. 1996 Buoyancy and property variation effects in turbulent mixed convection of water in vertical tubes. Trans. ASME J. Heat Transfer 118, 381387.CrossRefGoogle Scholar
Poskas, P., Poskas, R. & Gediminskas, A. 2012 Numerical investigation of the opposing mixed convection in an inclined flat channel using turbulence transition models. In Journal of Physics: Conference Series, vol. 395, 012098. IOP Publishing.CrossRefGoogle Scholar
Pringle, C.C.T. & Kerswell, R.R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105 (15), 154502.CrossRefGoogle ScholarPubMed
Pringle, C.C.T., Willis, A.P. & Kerswell, R.R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.CrossRefGoogle Scholar
Reetz, F., Kreilos, T. & Schneider, T.M. 2019 Exact invariant solution reveals the origin of self-organized oblique turbulent–laminar stripes. Nat. Commun. 10 (1), 2277.CrossRefGoogle ScholarPubMed
Rogers, B.B. & Yao, L.S. 1993 Finite-amplitude instability of mixed-convection in a heated vertical pipe. Intl J. Heat Mass Transfer 36 (9), 23052315.CrossRefGoogle Scholar
Scheele, G.F. & Hanratty, T.J. 1962 Effect of natural convection on stability of flow in a vertical pipe. J. Fluid Mech. 14 (2), 244256.CrossRefGoogle Scholar
Scheele, G.F., Rosen, E.M. & Hanratty, T.J. 1960 Effect of natural convection on transition to turbulence in vertical pipes. Can. J. Chem. Engng 38 (3), 6773.CrossRefGoogle Scholar
Steiner, A. 1971 On the reverse transition of a turbulent flow under the action of buoyancy forces. J. Fluid Mech. 41 (3), 503512.CrossRefGoogle Scholar
Su, Y.-C. & Chung, J.N. 2000 Linear stability analysis of mixed-convection flow in a vertical pipe. J. Fluid Mech. 422, 141166.CrossRefGoogle Scholar
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.CrossRefGoogle Scholar
Turner, J.S. & Turner, J.S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Wang, J., Li, H., Yu, S. & Chen, T. 2011 Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes. Intl J. Heat Mass Transfer 54 (9–10), 19501958.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R.R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Wibisono, A.F., Addad, Y. & Lee, J.I. 2015 Numerical investigation on water deteriorated turbulent heat transfer regime in vertical upward heated flow in circular tube. Intl J. Heat Mass Transfer 83, 173186.CrossRefGoogle Scholar
Willis, A.P. 2017 The openpipeflow Navier–Stokes solver. SoftwareX 6, 124127.CrossRefGoogle Scholar
Willis, A.P. 2019 Equilibria, periodic orbits and computing them. arXiv:1908.06730.Google Scholar
Yao, L.S. 1987 Is a fully-developed and non-isothermal flow possible in a vertical pipe? Intl J. Heat Mass Transfer 30 (4), 707716.CrossRefGoogle Scholar
Yoo, J.Y. 2013 The turbulent flows of supercritical fluids with heat transfer. Annu. Rev. Fluid Mech. 45, 495525.CrossRefGoogle Scholar
You, J., Yoo, J.Y. & Choi, H. 2003 Direct numerical simulation of heated vertical air flows in fully developed turbulent mixed convection. Intl J. Heat Mass Transfer 46 (9), 16131627.CrossRefGoogle Scholar
Zhang, S., Xu, X., Liu, C. & Dang, C. 2020 A review on application and heat transfer enhancement of supercritical ${\rm CO}_2$ in low-grade heat conversion. Appl. Energy 269, 114962.CrossRefGoogle Scholar
Zhao, P., Zhu, J., Ge, Z., Liu, J. & Li, Y. 2018 Direct numerical simulation of turbulent mixed convection of LBE in heated upward pipe flows. Intl J. Heat Mass Transfer 126, 12751288.CrossRefGoogle Scholar
Supplementary material: File

Chu et al. supplementary movie

Right : the contour of streamwise velocity fluctuations; left: the turbulent mean profiles (orange line) and laminar profile (black line) of the periodic solution PO1 at C=4.
Download Chu et al. supplementary movie(File)
File 7.7 MB