Hostname: page-component-55f67697df-px5tt Total loading time: 0 Render date: 2025-05-08T19:44:16.790Z Has data issue: false hasContentIssue false

Mathematical modelling for acoustic microstreaming produced by a gas bubble undergoing asymmetric oscillations

Published online by Cambridge University Press:  08 May 2025

Claude Inserra*
Affiliation:
University of Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, UMR 1032, LabTAU, Lyon F-69003, France
Cyril Mauger
Affiliation:
INSA Lyon, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, UMR 5509, LMFA, Villeurbanne 69621, France
Philippe Blanc-Benon
Affiliation:
INSA Lyon, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, UMR 5509, LMFA, Villeurbanne 69621, France
Alexander A. Doinikov
Affiliation:
INSA Lyon, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, UMR 5509, LMFA, Villeurbanne 69621, France
*
Corresponding author: Claude Inserra, [email protected]

Abstract

An exact solution is developed for bubble-induced acoustic microstreaming in the case of a gas bubble undergoing asymmetric oscillations. The modelling is based on the decomposition of the solenoidal, first- and second-order, vorticity fields into poloidal and toroidal components. The result is valid for small-amplitude bubble oscillations without restriction on the size of the viscous boundary layer $(2\nu /\omega )^{1/2}$ in comparison to the bubble radius. The non-spherical distortions of the bubble interface are decomposed over the set of orthonormal spherical harmonics $Y_{n}^{m}(\theta , \phi )$ of degree $n$ and order $m$. The present theory describes the steady flow produced by the non-spherical oscillations $(n,\pm m)$ that occur at a frequency different from that of the spherical oscillation, as in the case of a parametrically excited surface oscillation. The three-dimensional aspect of the streaming pattern is revealed as well as the particular flow signatures associated with different asymmetric oscillations.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abramowitz, M. & Stegun, I.A. 1972 Handbook of Mathematical Functions.Dover.Google Scholar
Aghakhani, A., Yasa, O., Wrede, P. & Sitti, M. 2020 Acoustically powered surface-slipping mobile microrobots. Proc. Natl Acad. Sci. 117 (7), 34693477.CrossRefGoogle ScholarPubMed
Ahmed, D., Lu, M., Nourhani, A., Lammert, P.E., Stratton, Z., Muddana, H.S., Crespi, V.H. & Huang, T.J. 2015 Selectively manipulable acoustic-powered microswimmers. Sci. Rep. 5 (1), 9744.CrossRefGoogle ScholarPubMed
Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W. & Huang, T.J. 2016 Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7 (1), 11085.CrossRefGoogle ScholarPubMed
Backus, G. 1958 A class of self-sustaining dissipative spherical dynamos. Ann. Phys. 4, 372447.CrossRefGoogle Scholar
Backus, G. 1986 Poloidal and toroidal fields in geomagnetic field modelling. Rev. Geophys. 24 (1), 75109.CrossRefGoogle Scholar
Bertin, N., Spelman, T.A., Stephan, O., Gredy, L., Bouriau, M., Lauga, E. & Marmottant, P. 2015 Propulsion of bubble-based acoustic microswimmers. Phys. Rev. Appl. 4 (6), 064012.CrossRefGoogle Scholar
Birkin, P.R., Offin, D.G. & Leighton, T.G. 2016 An activated fluid stream – new techniques for cold water cleaning. Ultrason. Sonochem. 29, 612618.CrossRefGoogle ScholarPubMed
Bolanos-Jimenez, R., Rossi, M., Fernandez Rivas, D., Kähler, C.J. & Marin, A. 2017 Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry. J. Fluid Mech. 820, 529548.CrossRefGoogle Scholar
Boyce, W.E. & DiPrima, R.C. 2001 Elementary Differential Equations and Boundary Value Problems. Wiley.Google Scholar
Bullard, E.C. & Gellman, H. 1954 Homogeneous dynamics and terrestrial magnetism. Phil. Trans. R. Soc. Lond. A 247, 213278.Google Scholar
Chadwick, P. & Trowbridge, E.A. 1967 Elastic wave fields generated by scalar wave functions. Proc. Camb. Phil. Soc. 63 (4), 11771187.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamics and Hydromagnetic Stability. Clarendon Press.Google Scholar
Chang, C.T., Bostwick, J.B., Daniel, S. & Steen, P.H. 2015 Dynamics of sessile drops. Part 2. Experiment. J. Fluid Mech. 768, 442467.CrossRefGoogle Scholar
Cleve, S., Guedra, M., Mauger, C., Inserra, C. & Blanc-Benon, P. 2019 Microstreaming induced by acoustically trapped, non-spherically oscillating microbubbles. J. Fluid Mech. 875, 597621.CrossRefGoogle Scholar
Davidson, B.J. & Riley, N. 1971 Cavitation microstreaming. J. Sound Vib. 15 (2), 217233.CrossRefGoogle Scholar
Dijkink, R.J., van der Dennen, J.P., Ohl, C.D. & Prosperetti, A. 2006 The acoustic scallop: a bubble powered actuator. J. Micromech. Microeng. 16 (8), 16531659.CrossRefGoogle Scholar
Doinikov, A.A., Cleve, S., Regnault, G., Mauger, C. & Inserra, C. 2019 a Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. I. Case of modes 0 and m . Phys. Rev. E 100 (3), 033104.CrossRefGoogle Scholar
Doinikov, A.A., Cleve, S., Regnault, G., Mauger, C. & Inserra, C. 2019 b Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. II. Case of modes 1 and m . Phys. Rev. E 100 (3), 033105.CrossRefGoogle ScholarPubMed
Elder, S. 1959 Cavitation microstreaming. J. Acoust. Soc. Am. 31 (1), 5464.CrossRefGoogle Scholar
Elsasser, W.M. 1946 Induction effects in terrestrial magnetism. Phys. Rev. 69 (3–4), 106116.CrossRefGoogle Scholar
Fan, C.H., Liu, H.L., Ting, C.Y., Lee, Y.H., Huang, C.Y., Ma, Y.J., Wei, K.C., Yen, T.C. & Yeh, C.K. 2014 Submicron-bubble-enhanced focused ultrasound for blood–brain barrier disruption and improved CNS drug delivery. PLoS ONE 9 (5), e96327.CrossRefGoogle ScholarPubMed
Fauconnier, M., Bera, J.C. & Inserra, C. 2020 Nonspherical modes nondegeneracy of a tethered bubble. Phys. Rev. E 102 (3), 033108.CrossRefGoogle ScholarPubMed
Fauconnier, M., Mauger, C., Bera, J.C. & Inserra, C. 2022 Nonspherical dynamics and microstreaming of a wall-attached microbubble. J. Fluid Mech. 935, A22.CrossRefGoogle Scholar
Guédra, M., Inserra, C., Mauger, C. & Gilles, B. 2016 Experimental evidence of nonlinear mode coupling between spherical and nonspherical oscillations of microbubbles. Phys. Rev. E 94, 053115.Google ScholarPubMed
Inserra, C., Regnault, G., Cleve, S., Mauger, C. & Doinikov, A.A. 2020 a Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. III. Case of self-interacting modes nn . Phys. Rev. E 101 (1), 013111.CrossRefGoogle ScholarPubMed
Inserra, C., Regnault, G., Cleve, S., Mauger, C. & Doinikov, A.A. 2020 b Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. IV. Case of modes n and m. Phys. Rev. E 102 (4), 043103.CrossRefGoogle ScholarPubMed
Kim, W., Kim, T.-H., Choi, J. & Kim, H.-Y. 2009 Mechanism of particle removal by megasonic waves. Appl. Phys. Lett. 94 (8), 081908.CrossRefGoogle Scholar
Lajoinie, G., De Cock, I., Coussios, C.C., Lentacker, I., Le Gac, S., Stride, E. & Versluis, M. 2016 In vitro methods to study bubble–cell interactions: fundamentals and therapeutic applications. Biomicrofluidics 10 (1), 011501.CrossRefGoogle ScholarPubMed
Lamb, H. 1881 On the oscillations of a viscous spheroid. Proc. Lond. Math. Soc. 13, 5166.CrossRefGoogle Scholar
Lamb, H. 1916 Hydrodynamics. Cambridge University Press.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. Pergamon Press.Google Scholar
Lee, K.H., Lee, J.H., Won, J.M., Rhee, K. & Chung, S.K. 2012 Micromanipulation using cavitational microstreaming generated by acoustically oscillating twin bubbles. Sensors Actuators A: Phys. 188, 442449.CrossRefGoogle Scholar
Li, P., Collis, J.F., Brumley, D.R., Schneiders, L. & Sader, J.E. 2023 Structure of the streaming flow generated by a sphere in a fluid undergoing rectilinear oscillation. J. Fluid Mech. 974, A37.CrossRefGoogle Scholar
Longuet-Higgins, M.S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454 (1970), 725742.CrossRefGoogle Scholar
Maksimov, A. 2020 Splitting of the surface modes for bubble oscillations near a boundary. Phys. Fluids 32 (10), 102104.CrossRefGoogle Scholar
Maksimov, A.O. 2007 Viscous streaming from surface waves on the wall of acoustically-driven gas bubbles. Eur. J. Mech. B/Fluids 26 (1), 2842.CrossRefGoogle Scholar
Marin, A., Rossi, M., Rallabandi, B., Wang, C., Hilgenfeldt, S. & Kähler, C.J. 2015 Three-dimensional phenomena in microbubble acoustic streaming. Phys. Rev. Appl. 3 (4), 041001.CrossRefGoogle Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.CrossRefGoogle ScholarPubMed
Marmottant, P., Biben, T. & Hilgenfeldt, S. 2008 Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles. Proc. R. Soc.Lond. A 464 (2095), 17811800.Google Scholar
Marmottant, P., Versluis, M., de Jong, N., Hilgenfeldt, S. & Lohse, D. 2006 High-speed imaging of an ultrasound-driven bubble in contact with a wall: ‘Narcissus’ effect and resolved acoustic streaming. Exp. Fluids 41 (2), 147153.CrossRefGoogle Scholar
Mason, T.J. 1999 Sonochemistry, vol. 2. Oxford University Press. ISBN: 9780198503712.CrossRefGoogle Scholar
Mekki-Berrada, F., Thibault, P. & Marmottant, P. 2016 Acoustic pulsation of a microbubble confined between elastic walls. Phys. Fluids 28 (3), 032004.CrossRefGoogle Scholar
Mie, G. 1908 Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 25, 377445.CrossRefGoogle Scholar
Mohanty, S., Zhang, J., McNeill, J.M., Kuenen, T., Linde, F.P., Rouwkema, J. & Misra, S. 2021 Acoustically-actuated bubble-powered rotational micro-propellers. Sensors Actuators: B Chem. 347, 130589.CrossRefGoogle Scholar
Nyborg, W.L. 1958 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30 (4), 329339.CrossRefGoogle Scholar
Ohl, C.D. & Wolfrum, B. 2003 Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation. Biochimica et Biophysica Acta – General Sub. 1624 (1–3), 131138.CrossRefGoogle ScholarPubMed
Padmavati, B.S. & Amaranath, T. 2002 A note on decomposition of solenoidal fields. Appl. Maths Lett. 15 (7), 803805.CrossRefGoogle Scholar
Pereno, V. 2018 Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects. Biomicrofluidics 12 (3), 034109.CrossRefGoogle ScholarPubMed
Prosperetti, A. 1977 Viscous effects on perturbed spherical flows. Q. Appl. Maths 34 (4), 339352.CrossRefGoogle Scholar
Rallabandi, B., Wang, C. & Hilgenfeldt, S. 2014 Two-dimensional streaming flows driven by sessile semicylindrical microbubbles. J. Fluid Mech. 739, 5771.CrossRefGoogle Scholar
Regnault, G., Mauger, C., Blanc-Benon, P., Doinikov, A.A. & Inserra, C. 2021 Signatures of microstreaming patterns induced by non-spherically oscillating bubbles. J. Acoust. Soc. Am. 150 (2), 11881197.CrossRefGoogle ScholarPubMed
Reuter, F., Lauterborn, S., Mettin, R. & Lauterborn, W. 2017 Membrane cleaning with ultrasonically driven bubbles. Ultrason. Sonochem. 37, 542560.CrossRefGoogle ScholarPubMed
Saint-Michel, B. & Garbin, V. 2020 Acoustic bubble dynamics in a yield-stress fluid. Soft Matt. 16 (46), 1040510418.CrossRefGoogle Scholar
Shaw, S.J. 2006 Translation and oscillation of a bubble under axisymmetric deformation. Phys. Fluids 18 (7), 2006.CrossRefGoogle Scholar
Spelman, T.A. & Lauga, E. 2017 Arbitrary axisymmetric steady streaming: flow, force and propulsion. J. Eng. Maths 105 (1), 3165.CrossRefGoogle Scholar
Tho, P., Manasseh, R. & Ooi, A. 2007 Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech. 576, 191233.CrossRefGoogle Scholar
Varshalovich, D.A., Moskalev, A.N. & Khersonskii, V.K. 1988 Quantum Theory of Angular Momentum. World Scientific.CrossRefGoogle Scholar
Volk, A., Rossi, M., Rallabandi, B., Kähler, C.J., Hilgenfeldt, S. & Marin, A. 2020 Size-dependent particle migration and trapping in three-dimensional microbubble streaming flows. Phys. Rev. Fluids 5 (11), 114201.CrossRefGoogle Scholar
Wang, C., Rallabandi, B. & Hilgenfeldt, S. 2013 Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25 (2), 022002.CrossRefGoogle Scholar
Wu, J. & Nyborg, W.L. 2008 Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 60 (10), 11031116.CrossRefGoogle ScholarPubMed
Zhou, Y., Dai, L. & Jiao, N. 2022 Review of bubble applications in microrobotics: propulsion, manipulation, and assembly. Micromachines 13 (7), 1068.CrossRefGoogle ScholarPubMed