Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-05-01T08:25:22.867Z Has data issue: false hasContentIssue false

Mass transport modelling of two partially miscible, multicomponent fluids in nanoporous media

Published online by Cambridge University Press:  12 November 2024

Ming Ma
Affiliation:
John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Hamid Emami-Meybodi
Affiliation:
John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Fengyuan Zhang
Affiliation:
Hainan Institute, China University of Petroleum (Beijing), Beijing 102249, China National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China
Zhenhua Rui*
Affiliation:
Hainan Institute, China University of Petroleum (Beijing), Beijing 102249, China National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China
*
Email address for correspondence: [email protected]

Abstract

High-pressure fluid transport in nanoporous media such as shale formations requires further understanding because conventional continuum approaches become inadequate due to their ultralow permeability and complexity of transport mechanisms. We propose a species-based approach for modelling two partially miscible, multicomponent fluids in nanoporous media – one that does not rely on conventional bulk fluid transport frameworks but on species movement. We develop a numerical model for species transport of partially miscible, non-ideal fluid mixtures using the chemical potential gradient as the driving force. The model considers the binary friction concept to include the friction between fluid molecules as well as between fluid molecules and pore walls, and incorporates the key multicomponent transport mechanisms – Knudsen, viscous and molecular diffusion. Under single-phase conditions, the system under consideration is quantified by introducing multicomponent Sherwood number (Sh), Péclet number (Pe) and fluid–solid friction modulus (φ). Despite the complexity of fluid transport in nanopores, the steady-state single-phase transport results reveal the contribution of diffusion in nanopores, where all parameters collapse on a set of master curves for the multicomponent Sh with a dependence on multicomponent Pe and φ. Unsteady state, two-phase transport modelling of the codiffusion process shows that light and intermediate alkanes are produced much higher than heavy alkanes when the vapour phase appears. We demonstrate that the pressure gradient is also crucial in promoting CO2 and alkane mixing during counterdiffusion processes. These results stress the need for a paradigm shift from classical bulk flow modelling to species-based transport modelling in nanoporous media.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abou-Kassem, J.H., Islam, R. & Farouq Ali, S.M. 2020 Petroleum Reservoir Simulation: The Engineering Approach. Gulf Professional Publishing.Google Scholar
Abu-El-Sha'r, W.I. & Abriola, L.M. 1997 Experimental assessment of gas transport mechanisms in natural porous media: parameter evaluation. Water Resour. Res. 33, 505516.CrossRefGoogle Scholar
Achour, S.H. & Okuno, R. 2022 A single-phase diffusion model for gas injection in tight oil reservoirs. J. Petrol. Sci. Engng 213, 110469.CrossRefGoogle Scholar
Adu-Gyamfi, B., Ampomah, W., Tu, J., Sun, Q., Erzuah, S. & Acheampong, S. 2022 Assessment of chemo-mechanical impacts of CO2 sequestration on the caprock formation in Farnsworth oil field, Texas. Sci. Rep. 12, 13023.CrossRefGoogle ScholarPubMed
Behmanesh, H., Clarkson, C.R., Tabatabaie, S.H. & Heidari Sureshjani, M. 2015 Impact of distance-of-investigation calculations on rate-transient analysis of unconventional gas and light-oil reservoirs: new formulations for linear flow. J. Can. Petrol. Technol. 54, 509519.CrossRefGoogle Scholar
Bhatia, S.K., Bonilla, M.R. & Nicholson, D. 2011 Molecular transport in nanopores: a theoretical perspective. Phys. Chem. Chem. Phys. 13, 1535015383.CrossRefGoogle ScholarPubMed
Bhatia, S.K. & Nicholson, D. 2008 Modeling mixture transport at the nanoscale: departure from existing paradigms. Phys. Rev. Lett. 100, 236103.CrossRefGoogle ScholarPubMed
Bird, R.B. & Klingenberg, D.J. 2013 Multicomponent diffusion – a brief review. Adv. Water Resour. 62, 238242.CrossRefGoogle Scholar
Chen, C., Balhoff, M. & Mohanty, K.K. 2014 Effect of reservoir heterogeneity on primary recovery and CO2 huff ‘n’ puff recovery in shale-oil reservoirs. SPE Reserv. Eval. Engng 17, 404413.CrossRefGoogle Scholar
Corral-Casas, C., Li, J., Borg, M.K. & Gibelli, L. 2022 Knudsen minimum disappearance in molecular-confined flows. J. Fluid Mech. 945, A28.CrossRefGoogle Scholar
Cronin, M., Emami-Meybodi, H. & Johns, R.T. 2018 Diffusion-dominated proxy model for solvent injection in ultratight oil reservoirs. SPE J. 24, 660680.CrossRefGoogle Scholar
Cronin, M., Emami-Meybodi, H. & Johns, R.T. 2021 Multicomponent diffusion modeling of cyclic solvent injection in ultratight reservoirs. SPE J. 26, 12131232.CrossRefGoogle Scholar
Curtiss, C. & Bird, R.B. 1999 Multicomponent diffusion. Ind. Engng Chem. Res. 38, 25152522.CrossRefGoogle Scholar
Darabi, H., Ettehad, A., Javadpour, F. & Sepehrnoori, K. 2012 Gas flow in ultra-tight shale strata. J. Fluid Mech. 710, 641658.CrossRefGoogle Scholar
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon, 2 Vols., Text and Atlas. V. Dalmont.Google Scholar
Deen, W.M. 2013 Analysis of Transport Phenomena. Oxford University Press.Google Scholar
Do, D.D. 1998 Adsorption Analysis: Equilibria and Kinetics (With CD Containing Computer MATLAB Programs), vol. 2. World Scientific.CrossRefGoogle Scholar
Emami-Meybodi, H., Ma, M., Zhang, F., Rui, Z., Rezaeyan, A., Ghanizadeh, A., Hamdi, H. & Clarkson, C.R. 2025 Cyclic gas injection in low-permeability oil reservoirs: progress in modeling and experiments. SPE J. doi:10.2118/223116-PA.Google Scholar
Epstein, N. 1989 On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Engng Sci. 44, 777779.CrossRefGoogle Scholar
Falk, K., Coasne, B., Pellenq, R., Ulm, F.-j. & Bocquet, L. 2015 Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat. Commun. 6, 6949.CrossRefGoogle ScholarPubMed
Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2014 Modelling size segregation of granular materials: the roles of segregation, advection and diffusion. J. Fluid Mech. 741, 252279.CrossRefGoogle Scholar
Fick, A. 1855 Ueber diffusion. Ann. Phys. 170, 5986.CrossRefGoogle Scholar
Firoozabadi, A. 2016 Thermodynamics and Applications in Hydrocarbons Energy Production. McGraw-Hill Education.Google Scholar
Freeman, C.M., Moridis, G.J., Michael, G.E. & Blasingame, T.A. 2012 Measurement, modeling, and diagnostics of flowing gas composition changes in shale gas wells. In SPE Latin America and Caribbean Petroleum Engineering Conference, p. SPE-153391. SPE.CrossRefGoogle Scholar
Fuller, E.N., Schettler, P.D. & Giddings, J.C. 1966 New method for prediction of binary gas-phase diffusion coefficients. Ind. Engng Chem. 58, 1827.CrossRefGoogle Scholar
Gao, F., Chen, X., Yu, G. & Asumana, C. 2011 Compressible gases transport through porous membrane: a modified dusty gas model. J. Membr. Sci. 379, 200206.CrossRefGoogle Scholar
Graham, T. 1850 I. The Bakerian Lecture.—On the diffusion of liquids. Phil. Trans. R. Socc. of Lond. 140, 146.Google Scholar
Gruener, S. & Huber, P. 2008 Knudsen diffusion in silicon nanochannels. Phys. Rev. Lett. 100, 064502.CrossRefGoogle ScholarPubMed
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. & Bakajin, O. 2006 Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 10341037.CrossRefGoogle ScholarPubMed
Hoteit, H. & Firoozabadi, A. 2009 Numerical modeling of diffusion in fractured media for gas-injection and -recycling schemes. SPE J. 14, 323337.CrossRefGoogle Scholar
Jackson, R. 1977 Transport in Porous Catalysts. Elsevier Scientific Pub. Co. Distributors for the U.S. and Canada, Elsevier North-Holland.Google Scholar
Javadpour, F. 2009 Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Petrol. Technol. 48, 1621.CrossRefGoogle Scholar
Kampman, N., Busch, A., Bertier, P., Snippe, J., Hangx, S., Pipich, V., Di, Z., Rother, G., Harrington, J. & Evans, J.P. 2016 Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks. Nat. Commun. 7, 12268.CrossRefGoogle ScholarPubMed
Kärger, J., Ruthven, D.M. & Theodorou, D.N. 2012 Diffusion in Nanoporous Materials. Wiley Online Library.CrossRefGoogle Scholar
Kavokine, N., Netz, R.R. & Bocquet, L. 2021 Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377410.CrossRefGoogle Scholar
Kerkhof, P.J. & Geboers, M.A. 2005 a Toward a unified theory of isotropic molecular transport phenomena. AIChE J. 51, 79121.CrossRefGoogle Scholar
Kerkhof, P.J.A.M. 1996 A modified Maxwell-Stefan model for transport through inert membranes: the binary friction model. Chem. Engng J. Biochem. Engng J. 64, 319343.CrossRefGoogle Scholar
Kerkhof, P.J.A.M. & Geboers, M.A.M. 2005 b Analysis and extension of the theory of multicomponent fluid diffusion. Chem. Engng Sci. 60, 31293167.CrossRefGoogle Scholar
Kerkhof, P.J.A.M., Geboers, M.A.M. & Ptasinski, K.J. 2001 On the isothermal binary mass transport in a single pore. Chem. Engng J. 83, 107121.CrossRefGoogle Scholar
Knudsen, M. 1909 Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann. Phys. 333, 75130.CrossRefGoogle Scholar
Kramers, H. & Kistemaker, J. 1943 On the slip of a diffusing gas mixture along a wall. Physica 10, 699713.CrossRefGoogle Scholar
Krishna, R. 1987 A simplified procedure for the solution of the dusty gas model equations for steady-state transport in non-reacting systems. Chem. Engng J. 35, 7581.CrossRefGoogle Scholar
Krishna, R. 2012 Diffusion in porous crystalline materials. Chem. Soc. Rev. 41, 30993118.CrossRefGoogle ScholarPubMed
Krishna, R. & van Baten, J.M. 2005 Diffusion of alkane mixtures in zeolites:  validating the Maxwell−Stefan formulation using MD simulations. J. Phys. Chem. B 109, 63866396.CrossRefGoogle ScholarPubMed
Krishna, R. & Wesselingh, J.A. 1997 The Maxwell-Stefan approach to mass transfer. Chem. Engng Sci. 52, 861911.CrossRefGoogle Scholar
Lake, L.W., Johns, R.T., Rossen, W.R. & Pope, G.A. 2014 Fundamentals of Enhanced Oil Recovery. . Society of Petroleum Engineers.CrossRefGoogle Scholar
Leahy-Dios, A. & Firoozabadi, A. 2007 Unified model for nonideal multicomponent molecular diffusion coefficients. AIChE J. 53, 29322939.CrossRefGoogle Scholar
Lee, J.H., Cho, J. & Lee, K.S. 2020 Effects of aqueous solubility and geochemistry on CO2 injection for shale gas reservoirs. Sci. Rep. 10, 2071.CrossRefGoogle ScholarPubMed
Liehui, Z., Baochao, S., Yulong, Z. & Zhaoli, G. 2019 Review of micro seepage mechanisms in shale gas reservoirs. Intl J. Heat Mass Transfer 139, 144179.CrossRefGoogle Scholar
Liu, Z. & Emami-Meybodi, H. 2021 Diffusion-based modeling of gas transport in organic-rich ultratight reservoirs. SPE J. 26, 857882.CrossRefGoogle Scholar
Liu, Z. & Emami-Meybodi, H. 2022 Apparent diffusion coefficient for adsorption-controlled gas transport in nanoporous media. Chem. Engng J. 450, 138105.CrossRefGoogle Scholar
Liu, Z. & Emami-Meybodi, H. 2023 Gas transport in organic-rich nanoporous media with nonequilibrium sorption kinetics. Fuel 340, 127520.CrossRefGoogle Scholar
Ma, M. & Emami-Meybodi, H. 2024 a Multicomponent inhomogeneous fluid transport in nanoporous media. Chem. Engng J. 485, 149677.CrossRefGoogle Scholar
Ma, M. & Emami-Meybodi, H. 2024 b Multiphase multicomponent transport modeling of cyclic solvent injection in shale reservoirs. SPE J. 29, 15541573.CrossRefGoogle Scholar
Ma, M. & Emami-Meybodi, H. 2024 c Inhomogeneous fluid transport modeling in dual-scale porous media considering fluid–solid interactions. Langmuir 40 (34), 1795117963.Google Scholar
Marle, C. 1981 Multiphase Flow in Porous Media. Éditions technip.Google Scholar
Mason, E. 1983 Gas Transport in Porous Media: The Dusty-gas Model (Chemical Engineering Monographs V 17). Elsevier.Google Scholar
Maxwell, J.C. 1860 II. Illustrations of the dynamical theory of gases. Lond. Edinb. Dublin Phil. Mag. J. Sci. 20, 2137.CrossRefGoogle Scholar
Michelsen, M.L. & Mollerup, J.M. 2004 Thermodynamic Models: Fundamentals & Computational Aspects. Tie-Line Publications Holte.Google Scholar
Mills, A. & Chang, B. 2013 Two-dimensional diffusion in a Stefan tube: the classical approach. Chemical Engng Sci. 90, 130136.CrossRefGoogle Scholar
Moortgat, J. & Firoozabadi, A. 2013 Three-phase compositional modeling with capillarity in heterogeneous and fractured media. SPE J. 18, 11501168.CrossRefGoogle Scholar
Moortgat, J., Firoozabadi, A., Li, Z. & Espósito, R. 2013 CO2 injection in vertical and horizontal cores: measurements and numerical simulation. SPE J. 18, 331344.CrossRefGoogle Scholar
Onsager, L. 1931 Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405426.CrossRefGoogle Scholar
Ozowe, W., Zheng, S. & Sharma, M. 2020 Selection of hydrocarbon gas for huff-n-puff IOR in shale oil reservoirs. J. Petrol. Sci. Engng 195, 107683.CrossRefGoogle Scholar
Pang, Y., Fan, D. & Chen, S. 2021 A novel approach to predict gas flow in entire knudsen number regime through nanochannels with various geometries. SPE J. 26, 32653284.CrossRefGoogle Scholar
Pant, L.M., Mitra, S.K. & Secanell, M. 2013 A generalized mathematical model to study gas transport in PEMFC porous media. Intl J. Heat Mass Transfer 58, 7079.CrossRefGoogle Scholar
Patankar, S. 1980 Numerical Heat Transfer and Fluid Flow. CRC Press.Google Scholar
Peng, D.-Y. & Robinson, D.B. 1976 A new two-constant equation of state. Ind. Engng Chem. Fundam. 15, 5964.CrossRefGoogle Scholar
Perez, F. & Devegowda, D. 2020 A molecular dynamics study of primary production from shale organic pores. SPE J. 25, 25212533.CrossRefGoogle Scholar
Peters, E.J. 2012 Advanced Petrophysics. Live Oak Book Company.Google Scholar
Sutera, S.P. & Skalak, R. 1993 The history of Poiseuille's law. Annu. Rev. Fluid Mech. 25, 120.CrossRefGoogle Scholar
Sena Santiago, C.J. & Kantzas, A. 2022 A comparison between Klinkenberg and Maxwell-Stefan formulations to model tight condensate formations. SPE J. 27, 20152032.CrossRefGoogle Scholar
Taylor, R. & Krishna, R. 1993 Multicomponent Mass Transfer. Wiley.Google Scholar
Tian, Y., Zhang, C., Lei, Z., Yin, X., Kazemi, H. & Wu, Y.-S. 2021 An improved multicomponent diffusion model for compositional simulation of fractured unconventional reservoirs. SPE J. 26, 33163341.CrossRefGoogle Scholar
Truesdell, C. 1962 Mechanical basis of diffusion. J. Chem. Phys. 37, 23362344.CrossRefGoogle Scholar
Valdes-Parada, F., Wood, B. & Whitaker, S. 2023 Fick's law: a derivation based on continuum mechanics. Rev. Mex. Ing. Quím. 22, Fen23102.Google Scholar
Veldsink, J.W., Versteeg, G.F. & van Swaaij, W.P.M. 1994 An experimental study of diffusion and convection of multicomponent gases through catalytic and non-catalytic membranes. J. Membr. Sci. 92, 275291.CrossRefGoogle Scholar
Waggoner, J.R., Castillo, J.L. & Lake, L.W. 1992 Simulation of EOR processes in stochastically generated permeable media. SPE Form. Eval. 7, 173180.CrossRefGoogle Scholar
Wang, S., Javadpour, F. & Feng, Q. 2016 Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale. Fuel 181, 741758.CrossRefGoogle Scholar
Wang, Z., Wang, M. & Chen, S. 2018 Coupling of high Knudsen number and non-ideal gas effects in microporous media. J. Fluid Mech. 840, 5673.CrossRefGoogle Scholar
Whitaker, S. 2009 Derivation and application of the Stefan-Maxwell equations. Rev. Mex. Ing. Quím. 8, 213243.Google Scholar
Whitby, M., Cagnon, L., Thanou, M. & Quirke, N. 2008 Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8, 26322637.CrossRefGoogle ScholarPubMed
Wu, K., Li, X., Wang, C., Chen, Z. & Yu, W. 2015 A model for gas transport in microfractures of shale and tight gas reservoirs. AIChE J. 61, 20792088.CrossRefGoogle Scholar
Young, J.B. 2007 Thermofluid modeling of fuel cells. Annu. Rev. Fluid Mech. 39, 193215.CrossRefGoogle Scholar
Young, J.B. & Todd, B. 2005 Modelling of multi-component gas flows in capillaries and porous solids. Intl J. Heat Mass Transfer 48, 53385353.CrossRefGoogle Scholar
Yuan, J. & Sundén, B. 2014 On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes. Intl J. Heat Mass Transfer 69, 358374.CrossRefGoogle Scholar
Zidane, A. & Firoozabadi, A. 2021 Fickian diffusion in CO2 injection: a two-phase compositional flow model with fully 3D unstructured gridding. Fuel 303, 121278.CrossRefGoogle Scholar