Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-30T05:32:45.241Z Has data issue: false hasContentIssue false

Lifetime of the intense vorticity structures in isotropic turbulence

Published online by Cambridge University Press:  17 March 2025

Afonso A. Ghira
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
Gerrit E. Elsinga
Affiliation:
Laboratory for Aero and Hydrodynamics, Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
Carlos B. da Silva*
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
*
Corresponding author: Carlos B. da Silva, [email protected]

Abstract

A new temporal vortex tracking algorithm allows the first long-term temporal observation of the lives of the intense vorticity structures (IVS). The algorithm is applied to direct numerical simulations of statistically stationary isotropic turbulence, with Taylor-based Reynolds numbers in the range $54 \leqslant Re_{\lambda } \leqslant 239$. In the highest Reynolds number case, the continuous time tracking of millions of ‘worms’ is achieved for more than seven integral time scales and close to 200 Kolmogorov time scales. Within an integral scale volume, more than 66 structures exist, and approximately 20 new structures are created per Kolmogorov time. More than $80\, \%$ of the structures live a solitary ‘life’ without any visible interaction with the other structures, while approximately $15\, \%$ break into new structures. Less than $2\, \%$ of the structures merge with others to form new vortices. A ‘population model’ is developed to estimate the numbers of existing vortices for very long simulated times, and it is observed that the birth rate density of these structures slowly increases with the Reynolds number. The survival functions of the IVS lives exhibit an exponential distribution, with some structures living for more than $35$ Kolmogorov time scales (more than four integral time scales). The mean lifetime of the IVS scales with the mean turnover time scale of the worms, defined by their radii and tangential velocity, attaining $\approx 6.5$ turnover time scales at high Reynolds numbers.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aligolzadeh, F., Holzner, M. & Dawson, J.R. 2023 Entrainment, detrainment and enstrophy transport by small-scale vortex structures. J. Fluid Mech. 973, A5.CrossRefGoogle Scholar
Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.CrossRefGoogle Scholar
Biferale, L., Scagliarini, A. & Toschi, F. 2010 On the measurement of vortex filament lifetime statistics in turbulence. Phys. Fluids 22 (6), 065101.CrossRefGoogle Scholar
Buaria, D., Pumir, A. & Bodenschatz, E. 2020 Self-attenuation of extreme events in Navier–Stokes turbulence. Nat. Commun. 11 (1), 5852.CrossRefGoogle ScholarPubMed
Buaria, D., Pumir, A., Bodenschatz, E. & Yeung, P. 2019 Extreme velocity gradients in turbulent flows. New J. Phys. 21 (4), 043004.CrossRefGoogle Scholar
Cadot, O., Douady, S. & Couder, Y. 1995 Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow. Phys. Fluids 7 (3), 630646.CrossRefGoogle Scholar
da Silva, C., dos Reis, R. & Pereira, J. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.CrossRefGoogle Scholar
Davidson, P. 2015 Turbulence: An Introduction for Scientists and Engineers, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Douady, S., Couder, Y. & Brachet, M. 1991 Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67 (8), 983986.CrossRefGoogle ScholarPubMed
Elsinga, G., Ishihara, T. & Hunt, J. 2020 Extreme dissipation and intermittency in turbulence at very high Reynolds numbers. Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 476 (2243), 20200591.Google ScholarPubMed
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. 2008 Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141175.CrossRefGoogle Scholar
Ghira, A., Elsinga, G. & da Silva, C. 2022 Characteristics of the intense vorticity structures in isotropic turbulence at high Reynolds numbers. Phys. Rev. Fluids 7 (10), 104605.CrossRefGoogle Scholar
Goudar, M. & Elsinga, G. 2018 Tracer particle dispersion around elementary flow patterns. J. Fluid Mech. 843, 872897.CrossRefGoogle Scholar
Green, S.I. 1995 Fluid Vortices. Kluwer Academic.CrossRefGoogle Scholar
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.CrossRefGoogle Scholar
Jiménez, J. & Wray, A. 1998 On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255285.CrossRefGoogle Scholar
Jiménez, J., Wray, A., Saffman, P. & Rogallo, R. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255 (1), 6590.CrossRefGoogle Scholar
Kang, S.-J., Tanahashi, M. & Miyauchi, T. 2008 Dynamics of fine scale eddy clusters in turbulent channel flows. J. Turbul. 8 (52), 119.Google Scholar
Kaplan, E. & Meier, P. 1958 Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53 (282), 457481.CrossRefGoogle Scholar
Kerr, R. 1985 Higher-order derivative correlation and the alignment of small-scale structures in isotropic turbulence. J. Fluid Mech. 153, 3158.CrossRefGoogle Scholar
Kida, S. & Miura, H. 1998 Identification and analysis of vortical structures. Eur. J. Mech. B/Fluids 17 (4), 471489.CrossRefGoogle Scholar
Klein, J.P. & Moeschberger, M.L. 2003 Survival Analysis Techniques for Censored and Truncated Data. Springer.CrossRefGoogle Scholar
Royston, P. & Parmar, M.K. 2013 Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med. Res. Methodol. 13 (1), 152.CrossRefGoogle Scholar
Ruetsch, G. & Maxey, M. 1991 Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids 3 (6), 15871597.CrossRefGoogle Scholar
Ruetsch, G. & Maxey, M. 1992 The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluids 4 (12), 27472760.CrossRefGoogle Scholar
Shaw, R. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.CrossRefGoogle Scholar
She, Z.-S., Jackson, E. & Orszag, S. 1991 Structure and dynamics of homogeneous turbulence: models and simulations. Proc. R. Soc. Lond. A 434 (1890), 101124.Google Scholar
Siggia, E. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107 (1), 375406.CrossRefGoogle Scholar
Tanahashi, M., Iwase, S. & Miyauchi, T. 2001 Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbul. 2 (6), 117.CrossRefGoogle Scholar
Verzicco, R. & Jiménez, J. 1999 On the survival of strong vortex filaments in ‘model’ turbulence. J. Fluid Mech. 394, 261279.CrossRefGoogle Scholar
Verzicco, R., Jiménez, J. & Orlandi, P. 1995 On steady columnar vortices under local compression. J. Fluid Mech. 299, 367388.CrossRefGoogle Scholar
Villermaux, E., Sixou, B. & Gagne, Y. 1995 Intense vortical structures in grid-generated turbulence. Phys. Fluids 7 (8), 20082013.CrossRefGoogle Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.CrossRefGoogle Scholar
Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.CrossRefGoogle Scholar
Yeung, P., Sreenivasan, K. & Pope, S. 2018 Kolmogorov similarity scaling for one-particle Lagrangian statistics. Phys. Rev. Fluids 3 (6), 064603.CrossRefGoogle Scholar