Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-26T00:31:10.297Z Has data issue: false hasContentIssue false

Lattice Boltzmann simulations of Rayleigh–Bénard convection with compressibility-induced non-Oberbeck–Boussinesq effects

Published online by Cambridge University Press:  23 April 2025

Junren Hou
Affiliation:
Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China
Minyun Liu
Affiliation:
CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610213, PR China
Shanfang Huang*
Affiliation:
Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Shanfang Huang, [email protected]

Abstract

To analyse compressibility-induced non-Oberbeck–Boussinesq (NOB-II) effects, we present a lattice Boltzmann (LB) model capable of simulating supercritical fluids. The LB model is validated using analytical solutions and experimental data. Using this model, we conduct two-dimensional laminar LB simulations of Rayleigh–Bénard convection (RBC) in supercritical fluids. Our results reveal that the ratio of the adiabatic temperature difference to the total temperature difference, $\alpha$, effectively indicates the intensity of NOB-II effects. We find that, NOB-II effects do not break the symmetry of the temperature, density or momentum fields. However, due to density differences between the upper and lower regions, NOB-II effects break the velocity symmetry. Moreover, we report for the first time the density inversion phenomenon in RBC, wherein convection can still occur when the bottom fluid is denser than the top fluid. The condition for density inversion is given as $\alpha \gt (c_p - c_v)/{c_p}$, where $c_p$ and $c_v$ are the specific heat capacities at constant pressure and volume, respectively. This inversion is attributed to the coupling effect of a significant pressure gradient and fluid compressibility. Our results also show that for a given Rayleigh number, NOB-II effects have no impact on the Reynolds number. However, as $\alpha$ approaches 1, the Nusselt number decreases linearly towards 1, indicating significant heat transfer deterioration (HTD). The mechanism underlying HTD is attributed to the compression work term in the energy equation, which absorbs heat from the hot plume in central region, diminishing its capacity to transfer heat from the bottom to the top plate.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Accary, G., Bontoux, P. & Zappoli, B. 2009 Turbulent Rayleigh–Bénard convection in a near-critical fluid by three-dimensional direct numerical simulation. J. Fluid Mech. 619, 127145.CrossRefGoogle Scholar
Accary, G., Raspo, I., Bontoux, P. & Zappoli, B. 2005 Reverse transition to hydrodynamic stability through the Schwarzschild line in a supercritical fluid layer. Phys. Rev. E 72 (3), 035301.CrossRefGoogle Scholar
Ahlers, G., Araujo, F.F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck-Boussinesq effects in gaseous Rayleigh-Bénard convection. Phys. Rev. Lett. 98 (5), 054501.CrossRefGoogle ScholarPubMed
Ahlers, G., Brown, E., Araujo, F.F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.CrossRefGoogle Scholar
Ahlers, G., Calzavarini, E., Araujo, F.F., Funfschilling, D., Grossmann, S., Lohse, D. & Sugiyama, K. 2008 Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point. Phys. Rev. E 77 (4), 046302.CrossRefGoogle Scholar
Amiroudine, S., Bontoux, P., LarroudÉ, P., Gilly, B. & Zappoli, B. 2001 Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below. J. Fluid Mech. 442, 119140.CrossRefGoogle Scholar
Amiroudine, S. & Zappoli, B. 2003 Piston-effect-induced thermal oscillations at the Rayleigh-Bénard threshold in supercritical $^{3}\mathrm{He}$ . Phys. Rev. Lett. 90 (10), 105303.CrossRefGoogle Scholar
Ashkenazi, S. & Steinberg, V. 1999 High Rayleigh number turbulent convection in a gas near the gas-liquid critical point. Phys. Rev. Lett. 83 (18), 36413644.CrossRefGoogle Scholar
Bouafia, M. & Daube, O. 2021 Rayleigh-Bénard convection in 3he near its critical point. Intl Commun. Heat Mass Transfer 120, 104820.CrossRefGoogle Scholar
Carlès, P. & Ugurtas, B. 1999 The onset of free convection near the liquid–vapour critical point Part I: Stationary initial state. Physica D 126 (1-2), 6982.CrossRefGoogle Scholar
Carlès, P. & El Khouri, L. 2001 Near-critical fluids as experimental models for geophysical flows: the case of internal gravity waves. Phys. Fluids 13 (12), 37753782.CrossRefGoogle Scholar
Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S. & Yakhot, V. 2003 Extended Boltzmann kinetic equation for turbulent flows. Science 301 (5633), 633636.CrossRefGoogle ScholarPubMed
Chen, J., Ahmad, S., Deng, W., Cai, J. & Zhao, J. 2022 Micro/nanoscale surface on enhancing the microchannel flow boiling performance: A Lattice Boltzmann simulation. Appl. Therm. Engng 205, 118036.CrossRefGoogle Scholar
Chiwata, Y. & Onuki, A. 2001 Thermal plumes and convection in highly compressible fluids. Phys. Rev. Lett. 87 (14), 144301.CrossRefGoogle ScholarPubMed
Clever, R.M. & Busse, F.H. 1974 Transition to time-dependent convection. J. Fluid Mech. 65 (4), 625645.CrossRefGoogle Scholar
Demou, A.D. & Grigoriadis, D.G.E. 2019 Direct numerical simulations of Rayleigh–Bénard convection in water with non-Oberbeck–Boussinesq effects. J. Fluid Mech. 881, 10731096.CrossRefGoogle Scholar
Elliott, J.R. & Lira, C.T. 2012 Introductory Chemical Engineering Thermodynamics. Prentice Hall.Google Scholar
Furukawa, A. & Onuki, A. 2002 Convective heat transport in compressible fluids. Phys. Rev. E 66 (1), 016302.CrossRefGoogle ScholarPubMed
Gao, Y., Yu, Y., Yang, L., Qin, S. & Hou, G. 2021 Development of a coupled simplified Lattice Boltzmann method for thermal flows. Comput. Fluids 229, 105042.CrossRefGoogle Scholar
Giterman, M.Sh & Shteinberg, V.A. 1970 Criteria for commencement of convection in a liquid close to the critical point. High Temp. 8 (4), 754.Google Scholar
Gong, S., Hu, Z. & Cheng, P. 2024 A mesoscopic approach for nanoscale evaporation heat transfer characteristics. Intl J. Heat Mass Transfer 231, 125856.CrossRefGoogle Scholar
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 046308.CrossRefGoogle ScholarPubMed
He, X. & Doolen, G.D. 2002 Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107 (1/2), 309328.CrossRefGoogle Scholar
Horn, S., Shishkina, O. & Wagner, C. 2013 On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol. J. Fluid Mech. 724, 175202.CrossRefGoogle Scholar
Huang, J., Zhou, Y., Huang, Y., Luo, Q., Yuan, Y., Yang, C. & Hu, W. 2024 Experimental study of pressure drop oscillation in a supercritical carbon dioxide natural circulation loop. Intl J. Heat Mass Transfer 220, 125005.CrossRefGoogle Scholar
Huang, R. & Wu, H. 2016 Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow. J. Comput. Phys. 327, 121139.CrossRefGoogle Scholar
Jiang, M., Xu, Z.G. & Zhou, Z.P. 2021 Pore-scale investigation on reactive flow in porous media considering dissolution and precipitation by LBM. J. Petrol. Sci. Engng 204, 108712.CrossRefGoogle Scholar
Johnston, H. & Doering, C.R. 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant Flux. Phys. Rev. Lett. 102 (6), 064501.CrossRefGoogle ScholarPubMed
Kogan, A.B. & Meyer, H. 2001 Heat transfer and convection onset in a compressible fluid: ${}^{3}\mathrm {He}$ near the critical point. Phys. Rev. E 63 (5), 056310.CrossRefGoogle Scholar
Kogan, A.B., Murphy, D. & Meyer, H. 1999 Rayleigh-Bénard convection onset in a compressible fluid: ${}^{3}\mathrm {He}$ near ${T}_{C}$ . Phys. Rev. Lett. 82 (23), 46354638.CrossRefGoogle Scholar
Li, Q., Kang, Q.J., Francois, M.M., He, Y.L. & Luo, K.H. 2015 Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. Intl J. Heat Mass Transfer 85, 787796.CrossRefGoogle Scholar
Lohse, Detlef & Shishkina, Olga 2024 Ultimate Rayleigh-Bénard turbulence. Rev. Mod. Phys. 96 (3), 035001.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 42 (2010), 335364.CrossRefGoogle Scholar
Meyer, H. & Kogan, A.B. 2002 Onset of convection in a very compressible fluid: the transient toward steady state. Phys. Rev. E 66 (5), 056310.CrossRefGoogle Scholar
Misale, M., Garibaldi, P., Passos, J.C. & de Bitencourt, G.G. 2007 Experiments in a single-phase natural circulation mini-loop. Exp. Therm. Fluid Sci. 31 (8), 11111120.CrossRefGoogle Scholar
Moukalled, F., Mangani, L. & Darwish, M. 2016 The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab. Spinger.CrossRefGoogle Scholar
Pan, X. & Choi, J.-Il 2023 Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh–Bénard convection of different fluids. Phys. Fluids 35 (9), 095108.CrossRefGoogle Scholar
Pan, X. & Choi, J.-Il 2024 Effects of inclination angle on Rayleigh–Bénard convection under non-Oberbeck–Boussinesq approximation in air. Intl Commun. Heat Mass Transfer 151, 107255.CrossRefGoogle Scholar
Pandey, A., Schumacher, J. & Sreenivasan, K.R. 2021 Non-Boussinesq convection at low Prandtl numbers relevant to the Sun. Phys. Rev. Fluids 6 (10), 100503.CrossRefGoogle Scholar
Peng, D.-Y. & Robinson, D.B. 1976 A new two-constant equation of state. Ind. Engng Chem. Fundamen. 15 (1), 5964.CrossRefGoogle Scholar
Qian, Y.-H., d’Humières, D. & Lallemand, P. 1992 Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 17 (6), 479484.CrossRefGoogle Scholar
Shah, S.W.A., Jiang, X., Li, Y., Chen, G., Liu, J., Gao, Y., Ahmad, S., Zhao, J. & Pan, C. 2023 Flow boiling in a counter flow straight microchannel pair: LBM study. Intl Commun. Heat Mass Transfer 147, 106990.CrossRefGoogle Scholar
Shan, X. 1997 Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Phys. Rev. E 55 (3), 27802788.CrossRefGoogle Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 18151819.CrossRefGoogle ScholarPubMed
Shan, X. & Chen, H. 1994 Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49 (4), 29412948.CrossRefGoogle ScholarPubMed
Shen, B. & Zhang, P. 2012 Rayleigh–Bénard convection in a supercritical fluid along its critical isochore in a shallow cavity. Intl J. Heat Mass Transfer 55 (23), 71517165.CrossRefGoogle Scholar
Shishkina, O. & Wagner, S. 2016 Prandtl-number dependence of heat transport in Laminar horizontal convection. Phys. Rev. Lett. 116 (2), 024302.CrossRefGoogle ScholarPubMed
Shishkina, O., Weiss, S. & Bodenschatz, E. 2016 Conductive heat flux in measurements of the Nusselt number in turbulent Rayleigh-Bénard convection. Phys. Rev. Fluids 1 (6), 062301.CrossRefGoogle Scholar
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2009 Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J. Fluid Mech. 637, 105135.CrossRefGoogle Scholar
Tong, Z., Chen, Y. & Malkawi, A. 2017 Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology. Appl. Energy 193, 276286.CrossRefGoogle Scholar
Toppaladoddi, S. & Wettlaufer, J.S. 2018 Penetrative convection at high Rayleigh numbers. Phys. Rev. Fluids 3 (4), 043501.CrossRefGoogle Scholar
Valori, V., Elsinga, G., Rohde, M., Tummers, M., Westerweel, J. & van der, H. 2017 Experimental velocity study of non-Boussinesq Rayleigh-Bénard convection. Phys. Rev. E 95 (5), 053113.CrossRefGoogle ScholarPubMed
Wan, Z.-H., Wang, Q., Wang, B., Xia, S.N., Zhou, Q. & Sun, D.-J. 2020 On non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection of air for large temperature differences. J. Fluid Mech. 889, A10.CrossRefGoogle Scholar
Wang, Q., Zhou, Q., Wan, Z.-H. & Sun, D.-J. 2019 Penetrative turbulent Rayleigh013; Bénard convection in two and three dimensions. J. Fluid Mech. 870, 718734.CrossRefGoogle Scholar
Winchester, P., Howell, P.D. & Dallas, V. 2022 The onset of zonal modes in two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 939, A8.CrossRefGoogle Scholar
Wu, X.-Z. & Libchaber, A. 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43 (6), 28332839.CrossRefGoogle ScholarPubMed
Yik, H., Valori, V. & Weiss, S. 2020 Turbulent Rayleigh-Bénard convection under strong non-Oberbeck-Boussinesq conditions. Phys. Rev. Fluids 5 (10), 103502.CrossRefGoogle Scholar
Yu, J., Goldfaden, A., Flagstad, M. & Scheel, J.D. 2017 Onset of Rayleigh-Bénard convection for intermediate aspect ratio cylindrical containers. Phys. Fluids 29 (2), 024107.CrossRefGoogle Scholar
Zappoli, B., Bailly, D., Garrabos, Y., Le Neindre, B., Guenoun, P. & Beysens, D. 1990 Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys. Rev. A 41 (4), 22642267.CrossRefGoogle ScholarPubMed
Zhang, J., Childress, S. & Libchaber, A. 1997 Non-Boussinesq effect: thermal convection with broken symmetry. Phys. Fluids 9 (4), 10341042.CrossRefGoogle Scholar
Zou, Q. & He, X. 1997 On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model. Phys. Fluids 9 (6), 15911598.CrossRefGoogle Scholar