Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-29T19:06:50.907Z Has data issue: false hasContentIssue false

Harnessing wall slip towards tunable microswimming in Poiseuille flow

Published online by Cambridge University Press:  17 October 2024

Soumyajit Ghosh
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Dhanbad (Indian School of Mines), Dhanbad, Jharkhand 826004, India
Srimoyee Ghoshal
Affiliation:
Department of Mechanical Engineering, Meghnad Saha Institute of Technology, Kolkata, West Bengal 700150, India
Antarip Poddar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Dhanbad (Indian School of Mines), Dhanbad, Jharkhand 826004, India
*
Email address for correspondence: [email protected]

Abstract

Understanding the effect of intricate surface wettability conditions on microswimmers is crucial for precisely navigating them across narrow microcirculatory networks. Here, we adopt the spherical squirmer model and Navier slip condition to delineate the microswimmer locomotion under a Poiseuille flow in a slit microchannel. Through a combined analytical–numerical approach utilizing bispherical coordinates and the superposition technique, we resolve the slip-modulated simultaneous hydrodynamic interaction with substrate boundaries. Phase portraits reveal that slip significantly alters propulsion mechanisms, destabilizing centreline stable oscillations of pullers beyond a threshold slip length. Superhydrophobic surfaces suppress near-wall rheotaxis states but preserve centreline focusing, facilitating slip-assisted directed transport without surface accumulation. Under strong background flows, subcritical Hopf bifurcation emerges for pullers at a critical slip length, transitioning dynamics from coexisting stable and unstable states to purely unstable behaviour. Contrastingly, for pushers, slip causes a transition from unstable to either stable or fixed-amplitude oscillations. Increased slip length reduces hydrodynamic repulsion on pullers from the walls by enhancing rotational velocity near the walls, whereas it counteracts the torque that causes unstable oscillations of pushers. Three-dimensional analysis of the trajectories reveals the significant role of the out-of-plane orientation of the microswimmer in its transitions between different swimming states. The presented regime maps offer parametric combinations for specific motion behaviours, guiding the development of smart microfluidic drug delivery systems and preventing biofilm deposition in biomedical devices.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

de Ávila, B.E.-F., et al. 2017 Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8 (1), 272.CrossRefGoogle Scholar
Baker, R., et al. 2019 Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion. Nanoscale 11 (22), 1094410951.CrossRefGoogle Scholar
Baraban, L., Harazim, S.M., Sanchez, S. & Schmidt, O.G. 2013 Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. 125 (21), 56625666.CrossRefGoogle Scholar
Barry, M.T., Rusconi, R., Guasto, J.S. & Stocker, R. 2015 Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton. J. R. Soc. Interface 12 (112), 20150791.CrossRefGoogle Scholar
Behera, N., Poddar, A. & Chakraborty, S. 2023 Eccentricity-induced dielectrophoretic migration of a compound drop in a uniform external electric field. J. Fluid Mech. 963, A17.CrossRefGoogle Scholar
Berke, A.P., Turner, L., Berg, H.C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101 (3), 038102.CrossRefGoogle Scholar
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Bregulla, A.P., Yang, H. & Cichos, F. 2014 Stochastic localization of microswimmers by photon nudging. ACS Nano 8 (7), 65426550.CrossRefGoogle Scholar
Bretherton, F. & Rothschild, N.M.V. 1961 Rheotaxis of spermatozoa. Proc. R. Soc. Lond. B: Biol. Sci. 153 (953), 490502.Google Scholar
Brosseau, Q., Usabiaga, F.B., Lushi, E., Wu, Y., Ristroph, L., Zhang, J., Ward, M. & Shelley, M.J. 2019 Relating rheotaxis and hydrodynamic actuation using asymmetric gold–platinum phoretic rods. Phys. Rev. Lett. 123 (17), 178004.CrossRefGoogle Scholar
Chakraborty, S. 2008 Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements. Phys. Rev. Lett. 100 (9), 097801.CrossRefGoogle Scholar
Chapra, S.C. 2010 Numerical Methods for Engineers. McGraw-Hill.Google Scholar
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96 (6), 066001.CrossRefGoogle Scholar
Choudhary, A., Paul, S., Rühle, F. & Stark, H. 2022 How inertial lift affects the dynamics of a microswimmer in Poiseuille flow. Commun. Phys. 5 (1), 14.CrossRefGoogle Scholar
Choudhary, A. & Stark, H. 2022 On the cross-streamline lift of microswimmers in viscoelastic flows. Soft Matt. 18 (1), 4852.CrossRefGoogle Scholar
Cosson, J., Huitorel, P. & Gagnon, C. 2003 How spermatozoa come to be confined to surfaces. Cell Motil. Cytoskel. 54 (1), 5663.CrossRefGoogle Scholar
Damor, H., Ghosh, S. & Poddar, A. 2023 Surface entrapment of micromotors by a background temperature field. Phys. Fluids 35 (8), 082008.CrossRefGoogle Scholar
Dey, R., Buness, C.M., Hokmabad, B.V., Jin, C. & Maass, C.C. 2022 Oscillatory rheotaxis of artificial swimmers in microchannels. Nat. Commun. 13 (1), 2952.CrossRefGoogle Scholar
Di Leonardo, R., Dell'Arciprete, D., Angelani, L. & Iebba, V. 2011 Swimming with an image. Phys. Rev. Lett. 106 (3), 038101.CrossRefGoogle Scholar
Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S. & Goldstein, R.E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. 108 (27), 1094010945.CrossRefGoogle Scholar
Elgeti, J., Winkler, R.G. & Gompper, G. 2015 Physics of microswimmers – single particle motion and collective behavior: a review. Rep. Prog. Phys. 78 (5), 056601.CrossRefGoogle Scholar
Fischer, P. 2018 A machine from machines. Nat. Phys. 14 (11), 10721073.CrossRefGoogle Scholar
Gentili, D., Bolognesi, G., Giacomello, A., Chinappi, M. & Casciola, C. 2014 Pressure effects on water slippage over silane-coated rough surfaces: pillars and holes. Microfluid Nanofluid 16, 10091018.CrossRefGoogle Scholar
Ghalya, N., Sellier, A., Ekiel-Jeżewska, M.L. & Feuillebois, F. 2020 Effective viscosity of a dilute homogeneous suspension of spheres in Poiseuille flow between parallel slip walls. J. Fluid Mech. 899, A13.CrossRefGoogle Scholar
Ghosh, S. & Poddar, A. 2023 Slippery rheotaxis: new regimes for guiding wall-bound microswimmers. J. Fluid Mech. 967, A14.CrossRefGoogle Scholar
Guidobaldi, H.A., Jeyaram, Y., Condat, C., Oviedo, M., Berdakin, I., Moshchalkov, V., Giojalas, L.C., Silhanek, A. & Marconi, V.I. 2015 Disrupting the wall accumulation of human sperm cells by artificial corrugation. Biomicrofluidics 9 (2), 024122.CrossRefGoogle Scholar
Han, K., Shields, C.W. IV & Velev, O.D. 2018 Engineering of self-propelling microbots and microdevices powered by magnetic and electric fields. Adv. Funct. Mater. 28 (25), 1705953.CrossRefGoogle Scholar
Hill, J., Kalkanci, O., McMurry, J.L. & Koser, H. 2007 Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98 (6), 068101.CrossRefGoogle Scholar
Ho, B. & Leal, L. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (2), 365400.CrossRefGoogle Scholar
Hu, J., Wysocki, A., Winkler, R.G. & Gompper, G. 2015 Physical sensing of surface properties by microswimmers – directing bacterial motion via wall slip. Sci. Rep. 5 (1), 9586.CrossRefGoogle Scholar
Huang, J., Chen, H., Li, N. & Zhao, Y. 2023 Emerging microfluidic technologies for sperm sorting. Eng. Regen. 4, 161169.Google Scholar
Huffnagle, G., Dickson, R. & Lukacs, N. 2017 The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 10 (2), 299306.CrossRefGoogle Scholar
Ishikawa, T., Simmonds, M.P. & Pedley, T.J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Ishimoto, K. 2017 Guidance of microswimmers by wall and flow: thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions. Phys. Rev. E 96 (4), 043103.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88 (6), 062702.CrossRefGoogle Scholar
Jana, S., Um, S.H. & Jung, S. 2012 Paramecium swimming in capillary tube. Phys. Fluids 24 (4), 041901.CrossRefGoogle Scholar
Jones, C., Gomez, M., Muoio, R.M., Vidal, A., Mcknight, R.A., Brubaker, N.D. & Ahmed, W.W. 2021 Stochastic force dynamics of the model microswimmer Chlamydomonas reinhardtii: active forces and energetics. Phys. Rev. E 103 (3), 032403.CrossRefGoogle Scholar
Jones, R. 2004 Spherical particle in Poiseuille flow between planar walls. J. Chem. Phys. 121 (1), 483500.CrossRefGoogle Scholar
Junot, G., Figueroa-Morales, N., Darnige, T., Lindner, A., Soto, R., Auradou, H. & Clément, E. 2019 Swimming bacteria in Poiseuille flow: the quest for active Bretherton–Jeffery trajectories. Europhys. Lett. 126 (4), 44003.CrossRefGoogle Scholar
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R.E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cells. Elife 3, e02403.CrossRefGoogle Scholar
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R.E. 2013 Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. 110 (4), 11871192.CrossRefGoogle Scholar
Katuri, J., Uspal, W.E., Simmchen, J., Miguel-López, A. & Sánchez, S. 2018 Cross-stream migration of active particles. Sci. Adv. 4 (1), eaao1755.CrossRefGoogle Scholar
Kaya, T. & Koser, H. 2012 Direct upstream motility in Escherichia coli. Biophys. J. 102 (7), 15141523.CrossRefGoogle Scholar
Kim, S. & Karrila, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Courier Corporation.Google Scholar
Kumar, M. & Ardekani, A.M. 2019 Effect of external shear flow on sperm motility. Soft Matt. 15 (31), 62696277.CrossRefGoogle Scholar
Kuznetsov, Y.A. 1998 Elements of Applied Bifurcation Theory, 2nd edn. Springer.Google Scholar
Lauga, E., Brenner, M.P. & Stone, H.A. 2005 Microfluidics: the no-slip boundary condition. arXiv.cond-mat/0501557.Google Scholar
Lauga, E., DiLuzio, W.R., Whitesides, G.M. & Stone, H.A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.CrossRefGoogle Scholar
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Lee, S. & Leal, L. 1980 Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates. J. Fluid Mech. 98 (1), 193224.CrossRefGoogle Scholar
Lemelle, L., Palierne, J.-F., Chatre, E., Vaillant, C. & Place, C. 2013 Curvature reversal of the circular motion of swimming bacteria probes for slip at solid/liquid interfaces. Soft Matt. 9 (41), 97599762.CrossRefGoogle Scholar
Li, D. & Xuan, X. 2018 Electrophoretic slip-tuned particle migration in microchannel viscoelastic fluid flows. Phys. Rev. Fluids 3 (7), 074202.CrossRefGoogle Scholar
Li, G. & Tang, J.X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103 (7), 078101.CrossRefGoogle Scholar
Li, G.-J. & Ardekani, A.M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90 (1), 013010.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5 (2), 109118.CrossRefGoogle Scholar
Lima, A.C. & Mano, J.F. 2015 Micro-/nano-structured superhydrophobic surfaces in the biomedical field. Part I. Basic concepts and biomimetic approaches. Nanomedicine 10 (1), 103119.CrossRefGoogle Scholar
Lopez, D. & Lauga, E. 2014 Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (7), 071902.CrossRefGoogle Scholar
Mantripragada, V.T. & Poddar, A. 2022 Rheology dictated spreading regimes of a non-isothermal sessile drop. J. Fluid Mech. 951, A42.CrossRefGoogle Scholar
Marcos, , Fu, H.C., Powers, T.R. & Stocker, R. 2012 Bacterial rheotaxis. Proc. Natl Acad. Sci. 109 (13), 47804785.CrossRefGoogle Scholar
Mathijssen, A.J., Doostmohammadi, A., Yeomans, J.M. & Shendruk, T.N. 2016 Hydrodynamics of micro-swimmers in films. J. Fluid Mech. 806, 3570.CrossRefGoogle Scholar
Mathijssen, A.J., Pushkin, D.O. & Yeomans, J.M. 2015 Tracer trajectories and displacement due to a micro-swimmer near a surface. J. Fluid Mech. 773, 498519.CrossRefGoogle Scholar
Miki, K. & Clapham, D.E. 2013 Rheotaxis guides mammalian sperm. Curr. Biol. 23 (6), 443452.CrossRefGoogle Scholar
Molaei, M., Barry, M., Stocker, R. & Sheng, J. 2014 Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys. Rev. Lett. 113 (6), 068103.CrossRefGoogle Scholar
Nath, B., Caprini, L., Maggi, C., Zizzari, A., Arima, V., Viola, I., Di Leonardo, R. & Puglisi, A. 2023 A microfluidic method for passive trapping of sperms in microstructures. Lab on a Chip 23 (4), 773784.CrossRefGoogle Scholar
Navier, C. 1823 Mémoire sur les lois du mouvement des fluides. In Mémoire de l'Académie Royale des Siences de l'Institut de France, vol. VI, pp. 389–440. Sciences de L'Institut de France.Google Scholar
Omori, T., Kikuchi, K., Schmitz, M., Pavlovic, M., Chuang, C.-H. & Ishikawa, T. 2022 Rheotaxis and migration of an unsteady microswimmer. J. Fluid Mech. 930, A30.CrossRefGoogle Scholar
Palacci, J., Sacanna, S., Abramian, A., Barral, J., Hanson, K., Grosberg, A.Y., Pine, D.J. & Chaikin, P.M. 2015 Artificial rheotaxis. Sci. Adv. 1 (4), e1400214.CrossRefGoogle Scholar
Pasol, L., Martin, M., Ekiel-Jeżewska, M., Wajnryb, E., Bławzdziewicz, J. & Feuillebois, F. 2011 Motion of a sphere parallel to plane walls in a Poiseuille flow: application to field-flow fractionation and hydrodynamic chromatography. Chem. Engng Sci. 66 (18), 40784089.CrossRefGoogle Scholar
Pimponi, D., Chinappi, M., Gualtieri, P. & Casciola, C.M. 2016 Hydrodynamics of flagellated microswimmers near free-slip interfaces. J. Fluid Mech. 789, 514533.CrossRefGoogle Scholar
Poddar, A. 2023 Thermotactic navigation of an artificial microswimmer near a plane wall. J. Fluid Mech. 956, A25.CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2019 a Activated micromotor propulsion by enzyme catalysis in a biofluid medium. Appl. Phys. Lett. 114 (5), 053701.CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2020 Near-wall hydrodynamic slip triggers swimming state transition of micro-organisms. J. Fluid Mech. 894, A11.CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2021 Steering a thermally activated micromotor with a nearby isothermal wall. J. Fluid Mech. 915, A22.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2018 Sedimentation of a surfactant-laden drop under the influence of an electric field. J. Fluid Mech. 849, 277311.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2019 b Electrorheology of a dilute emulsion of surfactant-covered drops. J. Fluid Mech. 881, 524550.CrossRefGoogle Scholar
Qian, B., Montiel, D., Bregulla, A., Cichos, F. & Yang, H. 2013 Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4 (4), 14201429.CrossRefGoogle Scholar
Ren, L., Zhou, D., Mao, Z., Xu, P., Huang, T.J. & Mallouk, T.E. 2017 Rheotaxis of bimetallic micromotors driven by chemical–acoustic hybrid power. ACS Nano 11 (10), 1059110598.CrossRefGoogle Scholar
Rothschild 1963 Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198 (4886), 12211222.CrossRefGoogle Scholar
Rusconi, R., Guasto, J.S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10 (3), 212217.CrossRefGoogle Scholar
Schaar, K., Zöttl, A. & Stark, H. 2015 Detention times of microswimmers close to surfaces: influence of hydrodynamic interactions and noise. Phys. Rev. Lett. 115 (3), 038101.CrossRefGoogle Scholar
Shaik, V.A. & Ardekani, A.M. 2017 Motion of a model swimmer near a weakly deforming interface. J. Fluid Mech. 824, 4273.CrossRefGoogle Scholar
Sharan, P., Xiao, Z., Mancuso, V., Uspal, W.E. & Simmchen, J. 2022 Upstream rheotaxis of catalytic Janus spheres. ACS Nano 16 (3), 45994608.CrossRefGoogle Scholar
Shum, H., Gaffney, E.A. & Smith, D.J. 2010 Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. A: Math. Phys. Engng Sci. 466 (2118), 17251748.CrossRefGoogle Scholar
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Staben, M.E., Zinchenko, A.Z. & Davis, R.H. 2003 Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys. Fluids 15 (6), 17111733.CrossRefGoogle Scholar
Stark, H. 2016 Swimming in external fields. Eur. Phys. J. Spec. Top. 225, 23692387.CrossRefGoogle Scholar
Tottori, S. & Nelson, B.J. 2018 Controlled propulsion of two-dimensional microswimmers in a precessing magnetic field. Small 14 (24), 1800722.CrossRefGoogle Scholar
Tretheway, D.C. & Meinhart, C.D. 2004 A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys. Fluids 16 (5), 15091515.CrossRefGoogle Scholar
Uspal, W., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2015 Rheotaxis of spherical active particles near a planar wall. Soft Matt. 11 (33), 66136632.CrossRefGoogle Scholar
Vega-Sánchez, C. & Neto, C. 2022 Pressure drop measurements in microfluidic devices: a review on the accurate quantification of interfacial slip. Adv. Mater. Interfaces 9 (5), 2101641.CrossRefGoogle Scholar
Walker, B.J., Wheeler, R.J., Ishimoto, K. & Gaffney, E.A. 2019 Boundary behaviours of Leishmania mexicana: a hydrodynamic simulation study. J. Theor. Biol. 462, 311320.CrossRefGoogle Scholar
Wang, S., Ryu, J., He, G.-Q., Qin, F. & Sung, H.J. 2020 A self-propelled flexible plate with a Navier slip surface. Phys. Fluids 32 (2), 021906.Google Scholar
Zaferani, M., Suarez, S.S. & Abbaspourrad, A. 2021 Mammalian sperm hyperactivation regulates navigation via physical boundaries and promotes pseudo-chemotaxis. Proc. Natl Acad. Sci. 118 (44), e2107500118.CrossRefGoogle Scholar
Zhou, T., Wan, X., Huang, D.Z., Li, Z., Peng, Z., Anandkumar, A., Brady, J.F., Sternberg, P.W. & Daraio, C. 2024 AI-aided geometric design of anti-infection catheters. Sci. Adv. 10 (1), eadj1741.CrossRefGoogle Scholar
Zhu, L., Lauga, E. & Brandt, L. 2013 Low-Reynolds-number swimming in a capillary tube. J. Fluid Mech. 726, 285311.CrossRefGoogle Scholar
Zöttl, A. 2014 Hydrodynamics of microswimmers in confinement and in Poiseuille flow. PhD thesis, Technische Universität, Berlin.Google Scholar
Zöttl, A. & Stark, H. 2012 Nonlinear dynamics of a microswimmer in Poiseuille flow. Phys. Rev. Lett. 108 (21), 218104.CrossRefGoogle Scholar