Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-29T22:53:37.522Z Has data issue: false hasContentIssue false

Formation and development of the stopping vortex ring in starting jets

Published online by Cambridge University Press:  21 November 2024

Jianwei Zhu
Affiliation:
Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Guoqing Zhang*
Affiliation:
Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
S.C.M. Yu
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
Lei Gao
Affiliation:
School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, PR China
Ruijia Zhao
Affiliation:
Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
*
Email address for correspondence: [email protected]

Abstract

The formation mechanism for the stopping vortex ring (SVR) and its effects on the development of starting jets have been systematically investigated. The radial inward flow near the nozzle exit, arising from the pressure difference caused by the deceleration of starting jets, is considered to be the main contributing factor to the formation of the SVR. The formation process can generally be divided into (i) the rapid accumulation stage ($t_d^*\leq 1$) and (ii) the development stage ($t_d^*>1$), where $t_d^*$ is the formation time defined by the duration of the deceleration stage. For starting jets with different $(L/D)_d$, the final circulation value and circulation growth rate of the SVR can be scaled by $[(L/D)_d]^{-0.5}$ and $[(L/D)_d]^{-1.5}$, respectively. Here $(L/D)_d$ represents the stroke ratio during the deceleration stage. Analysing the temporal evolution of fluid parcels in the vicinity of the nozzle exit reveals that SVR entrains fluid from both inside and outside of the nozzle. Additionally, the influence of the SVR on the leading vortex ring and the trailing jet has been examined, with particular attention to its effects on the propulsive performance of the starting jet. The SVR affects the profiles of axial velocity and gauge pressure at the nozzle exit, thereby enhancing the generation of total thrust during the deceleration stage. Analysis has shown that depending on the deceleration rate, SVR can enhance the average velocity thrust by at least $10\,\%$ and compensate for up to a $60\,\%$ reduction in pressure thrust due to deceleration.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alben, S., Miller, L.A. & Peng, J. 2013 Efficient kinematics for jet-propelled swimming. J. Fluid Mech. 733, 100133.CrossRefGoogle Scholar
Allen, J.J. & Naitoh, T. 2005 Experimental study of the production of vortex rings using a variable diameter orifice. Phys. Fluids 17 (6), 061701.CrossRefGoogle Scholar
Anderson, E.J. & Grosenbaugh, M.A. 2005 Jet flow in steadily swimming adult squid. J. Expl Biol. 208 (6), 11251146.CrossRefGoogle ScholarPubMed
Asadi, H., Asgharzadeh, H. & Borazjani, I. 2018 On the scaling of propagation of periodically generated vortex rings. J. Fluid Mech. 853, 150170.CrossRefGoogle Scholar
Auerbach, D. 1991 Stirring properties of vortex rings. Phys. Fluids A 3 (5), 13511355.CrossRefGoogle Scholar
Bi, X. & Zhu, Q. 2020 Pulsed-jet propulsion via shape deformation of an axisymmetric swimmer. Phys. Fluids 32 (8), 081902.CrossRefGoogle Scholar
Bi, X. & Zhu, Q. 2022 Role of internal flow in squid-inspired jet propulsion. Phys. Fluids 34 (3), 031906.CrossRefGoogle Scholar
Blondeaux, P. & De Bernardinis, B. 1983 On the formation of vortex pairs near orifices. J. Fluid Mech. 135, 111122.CrossRefGoogle Scholar
Costello, J.H., Colin, S.P., Gemmell, B.J., Dabiri, J.O. & Sutherland, K.R. 2015 Multi-jet propulsion organized by clonal development in a colonial siphonophore. Nat. Commun. 6 (1), 8158.CrossRefGoogle Scholar
Dabiri, J.O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
Dabiri, J.O., Colin, S.P. & Costello, J.H. 2007 Morphological diversity of medusan lineages constrained by animal–fluid interactions. J. Expl Biol. 210 (11), 18681873.CrossRefGoogle ScholarPubMed
Dabiri, J.O., Colin, S.P., Costello, J.H. & Gharib, M. 2005 a Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J. Expl Biol. 208 (7), 12571265.CrossRefGoogle ScholarPubMed
Dabiri, J.O. & Gharib, M. 2005 Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.CrossRefGoogle Scholar
Dabiri, J.O., Gharib, M., Colin, S.P. & Costello, J.H. 2005 b Vortex motion in the ocean: in situ visualization of jellyfish swimming and feeding flows. Phys. Fluids 17 (9), 091108.CrossRefGoogle Scholar
Das, D., Bansal, M. & Manghnani, A. 2017 Generation and characteristics of vortex rings free of piston vortex and stopping vortex effects. J. Fluid Mech. 811, 138167.CrossRefGoogle Scholar
Didden, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30, 101116.CrossRefGoogle Scholar
DuClos, K.T., Gemmell, B.J., Colin, S.P., Costello, J.H., Dabiri, J.O. & Sutherland, K.R. 2022 Distributed propulsion enables fast and efficient swimming modes in physonect siphonophores. Proc. Natl Acad. Sci. USA 119 (49), e2202494119.CrossRefGoogle Scholar
Fernando, J.N. & Rival, D.E. 2016 Reynolds-number scaling of vortex pinch-off on low-aspect-ratio propulsors. J. Fluid Mech. 799, R3.CrossRefGoogle Scholar
Gao, L. 2011 The pinch-off process of the leading vortex ring in a starting jet. PhD thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore.Google Scholar
Gao, L., Wang, X., Yu, S.C.M. & Chyu, M.K. 2020 Development of the impulse and thrust for laminar starting jets with finite discharged volume. J. Fluid Mech. 902, A27.CrossRefGoogle Scholar
Gao, L. & Yu, S.C.M. 2010 A model for the pinch-off process of the leading vortex ring in a starting jet. J. Fluid Mech. 656, 205222.CrossRefGoogle Scholar
Gao, L. & Yu, S.C.M. 2012 Development of the trailing shear layer in a starting jet during pinch-off. J. Fluid Mech. 700, 382405.CrossRefGoogle Scholar
Gao, L., Yu, S.C.M., Ai, J.J. & Law, A.W.K. 2008 Circulation and energy of the leading vortex ring in a gravity-driven starting jet. Phys. Fluids 20 (9), 093604.CrossRefGoogle Scholar
Gemmell, B.J., Costello, J.H., Colin, S.P., Stewart, C.J., Dabiri, J.O., Tafti, D. & Priya, S. 2013 Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc. Natl Acad. Sci. USA 110 (44), 1790417909.CrossRefGoogle ScholarPubMed
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Glezer, A. 1988 The formation of vortex rings. Phys. Fluids 31 (12), 35323542.CrossRefGoogle Scholar
Glezer, A. & Coles, D. 1990 An experimental study of a turbulent vortex ring. J. Fluid Mech. 211, 243283.CrossRefGoogle Scholar
de Guyon, G. & Mulleners, K. 2021 Scaling of the translational velocity of vortex rings behind conical objects. Phys. Rev. Fluids 6 (2), 024701.CrossRefGoogle Scholar
Higuchi, H., Balligand, H. & Strickland, J.H. 1996 Numerical and experimental investigations of the flow over a disk undergoing unsteady motion. J. Fluids Struct. 10 (7), 705719.CrossRefGoogle Scholar
Irdmusa, J.Z. & Garris, C.A. 1987 Influence of initial and boundary conditions on vortex ring development. AIAA J. 25 (3), 371372.CrossRefGoogle Scholar
James, S. & Madnia, C.K. 1996 Direct numerical simulation of a laminar vortex ring. Phys. Fluids 8 (9), 24002414.CrossRefGoogle Scholar
Johari, H. & Desabrais, K.J. 2005 Vortex shedding in the near wake of a parachute canopy. J. Fluid Mech. 536, 185207.CrossRefGoogle Scholar
Kang, L., Gao, A.K., Han, F., Cui, W. & Lu, X.Y. 2023 Propulsive performance and vortex dynamics of jellyfish-like propulsion with burst-and-coast strategy. Phys. Fluids 35 (9), 091904.CrossRefGoogle Scholar
Kaplanski, F., Sazhin, S.S., Fukumoto, Y., Begg, S. & Heikal, M. 2009 A generalized vortex ring model. J. Fluid Mech. 622, 233258.CrossRefGoogle Scholar
Krieg, M. & Mohseni, K. 2013 Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity. J. Fluid Mech. 719, 488526.CrossRefGoogle Scholar
Krieg, M. & Mohseni, K. 2021 A new kinematic criterion for vortex ring pinch-off. Phys. Fluids 33 (3), 037120.CrossRefGoogle Scholar
Krueger, P.S. 2005 An over-pressure correction to the slug model for vortex ring circulation. J. Fluid Mech. 545, 427443.CrossRefGoogle Scholar
Krueger, P.S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15 (5), 12711281.CrossRefGoogle Scholar
Krueger, P.S. & Gharib, M. 2005 Thrust augmentation and vortex ring evolution in a fully-pulsed jet. AIAA J. 43 (4), 792801.CrossRefGoogle Scholar
Le, T.B., Borazjani, I., Kang, S. & Sotiropoulos, F. 2011 On the structure of vortex rings from inclined nozzles. J. Fluid Mech. 686, 451483.CrossRefGoogle Scholar
Limbourg, R. & Nedić, J. 2021 a An extended model for orifice starting jets. Phys. Fluids 33 (6), 067109.CrossRefGoogle Scholar
Limbourg, R. & Nedić, J. 2021 b Formation of an orifice-generated vortex ring. J. Fluid Mech. 913, A29.CrossRefGoogle Scholar
Linden, P.F. & Turner, J.S. 2004 ‘optimal’ vortex rings and aquatic propulsion mechanisms. Proc. R. Soc. Lond. Ser. B 271 (1539), 647653.CrossRefGoogle ScholarPubMed
Marugan-Cruz, C., Rodriguez-Rodriguez, J. & Martinez-Bazan, C. 2013 Formation regimes of vortex rings in negatively buoyant starting jets. J. Fluid Mech. 716, 470486.CrossRefGoogle Scholar
Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81 (3), 465495.CrossRefGoogle Scholar
Mohseni, K., Ran, H. & Colonius, T. 2001 Numerical experiments on vortex ring formation. J. Fluid Mech. 430, 267282.CrossRefGoogle Scholar
Olcay, A.B. & Krueger, P.S. 2010 Momentum evolution of ejected and entrained fluid during laminar vortex ring formation. Theor. Comput. Fluid Dyn. 24, 465482.CrossRefGoogle Scholar
Orlandi, P. & Verzicco, R. 1993 Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J. Fluid Mech. 256, 615646.CrossRefGoogle Scholar
Pawlak, G., Cruz, C.M., Bazán, C.M. & Hrdy, P.G. 2007 Experimental characterization of starting jet dynamics. Fluid Dyn. Res. 39 (11-12), 711.CrossRefGoogle Scholar
Ringuette, M.J., Milano, M. & Gharib, M. 2007 Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453468.CrossRefGoogle Scholar
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.CrossRefGoogle Scholar
Sadri, V. & Krueger, P.S. 2017 Formation and behavior of counter-rotating vortex rings. Theor. Comput. Fluid Dyn. 31, 369390.CrossRefGoogle Scholar
Schlueter-Kuck, K. & Dabiri, J.O. 2016 Pressure evolution in the shear layer of forming vortex rings. Phys. Rev. Fluids 1 (1), 012501.CrossRefGoogle Scholar
da Silva, C.B. & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.CrossRefGoogle Scholar
Steiner, J., Morize, C., Delbende, I., Sauret, A. & Gondret, P. 2023 Vortex rings generated by a translating disk from start to stop. Phys. Rev. Fluids 8, 064702.CrossRefGoogle Scholar
Trieling, R.R., Beckers, M. & Van Heijst, G.J.F. 1997 Dynamics of monopolar vortices in a strain flow. J. Fluid Mech. 345, 165201.CrossRefGoogle Scholar
Troolin, D.R. & Longmire, E.K. 2010 Volumetric velocity measurements of vortex rings from inclined exits. Exp. Fluids 48, 409420.CrossRefGoogle Scholar
Wakelin, S.L. & Riley, N. 1997 On the formation and propagation of vortex rings and pairs of vortex rings. J. Fluid Mech. 332, 121139.CrossRefGoogle Scholar
Weihs, D. 1977 Periodic jet propulsion of aquatic creatures. Front. Zool. 24 (2-3), 171175.Google Scholar
Xu, L. & Nitsche, M. 2015 Start-up vortex flow past an accelerated flat plate. Phys. Fluids 27 (3), 033602.CrossRefGoogle Scholar
Yang, A., Jia, L. & Yin, X. 2012 Formation process of the vortex ring generated by an impulsively started circular disc. J. Fluid Mech. 713, 6185.CrossRefGoogle Scholar
Zhang, X., Wang, J. & Wan, D. 2020 Cfd investigations of evolution and propulsion of low speed vortex ring. Ocean Engng 195, 106687.CrossRefGoogle Scholar
Zhao, W., Frankel, S.H. & Mongeau, L.G. 2000 Effects of trailing jet instability on vortex ring formation. Phys. Fluids 12 (3), 589596.CrossRefGoogle Scholar
Zhu, J., Zhang, G., Gao, L. & Yu, S.C.M. 2022 The formation process of annular starting jets. J. Fluid Mech. 949, A47.CrossRefGoogle Scholar
Zhu, J., Zhang, G., Gao, L. & Yu, S.C.M. 2023 a The circulation growth of non-impulsive starting jet. Phys. Fluids 35 (5), 057102.Google Scholar
Zhu, J., Zhang, G., Gao, L. & Yu, S.C.M. 2023 b Vortex ring formation process in starting jets with uniform background co-and counter-flow. J. Fluid Mech. 968, A26.CrossRefGoogle Scholar
Zhu, J., Zhang, G., Xia, H., Yu, S.C.M. & Gao, L. 2024 The influence of background co-flow on the propulsive characteristics of starting jets. Ocean Engng 309, 118463.CrossRefGoogle Scholar