Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-05-02T11:17:25.776Z Has data issue: false hasContentIssue false

The evolution of vortices determines the aeroacoustics generated by a hovering wing

Published online by Cambridge University Press:  28 November 2024

Xueyu Ji
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Bruce Ruishu Jin
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Qiuxiang Huang
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Li Wang
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Sridhar Ravi
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
John Young
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Joseph C.S. Lai
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Fang-Bao Tian*
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
*
Email address for correspondence: [email protected]

Abstract

The effects of the evolution of vortices on the aeroacoustics generated by a hovering wing are numerically investigated by using a hybrid method of an immersed boundary–finite difference method for the three-dimensional incompressible flows and a simplified model based on the Ffowcs Williams-Hawkings acoustic analogy. A low-aspect-ratio ($AR=1.5$) rectangular wing at low Reynolds ($Re=1000$) and Mach ($M=0.04$) numbers is investigated. Based on the simplified model, the far-field acoustics is shown to be dominated by the time derivative of the pressure on the wing surface. Results show that vortical structure evolution in the flow fields, which is described by the divergence of the convection term of the incompressible Navier–Stokes equations in a body-fixed reference frame, determines the time derivative of the surface pressure and effectively the far-field acoustics. It dominates over the centrifugal acceleration and Coriolis acceleration terms in determining the time derivative of the surface pressure. The position of the vortex is also found to affect the time derivative of the surface pressure. A scaling analysis reveals that the vortex acoustic source is scaled with the cube of the flapping frequency.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Current address: Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia.

§

Current address: School of Mechanical, Medical and Process Engineering, Queensland University of Technology, George St, Brisbane City, QLD 4000, Australia.

References

Arthur, B.J., Emr, K.S., Wyttenbach, R.A. & Hoy, R.R. 2014 Mosquito (Aedes aegypti) flight tones: frequency, harmonicity, spherical spreading, and phase relationships. J. Acoust. Soc. Am. 135 (2), 933941.CrossRefGoogle ScholarPubMed
Bae, Y. & Moon, Y.J. 2008 Aerodynamic sound generation of flapping wing. J. Acoust. Soc. Am. 124 (1), 7281.CrossRefGoogle ScholarPubMed
Bailly, C. & Juve, D. 2000 Numerical solution of acoustic propagation problems using linearized Euler equations. AIAA J. 38 (1), 2229.CrossRefGoogle Scholar
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Birch, J.M. & Dickinson, M.H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.CrossRefGoogle ScholarPubMed
Calderer, A., Yang, X., Angelidis, D., Khosronejad, A., Le, T., Kang, S., Gilmanov, A., Ge, L. & Borazjani, I. 2015 Virtual flow simulator. Tech. Rep. 004806MLTPL00. University of Minnesota.Google Scholar
Chang, C.-C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A: Math. Phys. Sci. 437 (1901), 517525.Google Scholar
Chen, L., Cheng, B. & Wu, J. 2023 a Vorticity dynamics and stability of the leading-edge vortex on revolving wings. Phys. Fluids 35 (9), 091301.CrossRefGoogle Scholar
Chen, L., Cheng, C., Zhou, C., Zhang, Y. & Wu, J. 2024 Flapping rotary wing: a novel low-Reynolds number layout merging bionic features into micro rotors. Prog. Aerosp. Sci. 146, 100984.CrossRefGoogle Scholar
Chen, L., Wang, L., Zhou, C., Wu, J. & Cheng, B. 2022 Effects of Reynolds number on leading-edge vortex formation dynamics and stability in revolving wings. J. Fluid Mech. 931, A13.CrossRefGoogle Scholar
Chen, L., Zhou, C., Werner, N.H., Cheng, B. & Wu, J. 2023 b Dual-stage radial–tangential vortex tilting reverses radial vorticity and contributes to leading-edge vortex stability on revolving wings. J. Fluid Mech. 963, A29.CrossRefGoogle Scholar
Chen, Y., Gravish, N., Desbiens, A.L., Malka, R. & Wood, R.J. 2016 Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing. J. Fluid Mech. 791, 133.CrossRefGoogle Scholar
Clark, C.J. 2021 Ways that animal wings produce sound. Integr. Compar. Biol. 61 (2), 696709.CrossRefGoogle ScholarPubMed
Colonius, T. & Lele, S.K. 2004 Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40 (6), 345416.CrossRefGoogle Scholar
Colonius, T., Lele, S.K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.CrossRefGoogle Scholar
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A Math. Phys. Sci. 231 (1187), 505514.Google Scholar
Dai, H., Luo, H. & Doyle, J.F. 2012 Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473499.CrossRefGoogle Scholar
Dewey, P.A., Boschitsch, B.M., Moored, K.W., Stone, H.A. & Smits, A.J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.CrossRefGoogle Scholar
Ehrenstein, U. 2019 Thrust and drag scaling of a rigid low-aspect-ratio pitching plate. J. Fluids Struct. 87, 3957.CrossRefGoogle Scholar
Eldredge, J.D. & Jones, A.R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75104.CrossRefGoogle Scholar
Ellington, C.P. 1984 The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond. B Biol. Sci. 305 (1122), 4178.Google Scholar
Ellington, C.P., Van Den Berg, C., Willmott, A.P. & Thomas, A.L.R. 1996 Leading-edge vortices in insect flight. Nature 384 (6610), 626630.CrossRefGoogle Scholar
Farassat, F. 2007 Derivation of formulations 1 and 1A of Farassat. Tech. Rep. NASA/TM-2007-214853. NASA Langley Research Center.Google Scholar
Farhat, C. & Lakshminarayan, V.K. 2014 An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid–structure interaction problems. J. Comput. Phys. 263, 5370.CrossRefGoogle Scholar
Ffowcs Williams, J.E. & Hawkings, D.L. 1969 Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A Math. Phys. Sci. 264 (1151), 321342.Google Scholar
Ford, C.W.P. & Babinsky, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720, 280313.CrossRefGoogle Scholar
Garmann, D.J. & Visbal, M.R. 2014 Dynamics of revolving wings for various aspect ratios. J. Fluid Mech. 748, 932956.CrossRefGoogle Scholar
Garmann, D.J., Visbal, M.R. & Orkwis, P.D. 2013 Three-dimensional flow structure and aerodynamic loading on a revolving wing. Phys. Fluids 25 (3), 034101.CrossRefGoogle Scholar
Geng, B., Xue, Q., Zheng, X., Liu, G., Ren, Y. & Dong, H. 2017 The effect of wing flexibility on sound generation of flapping wings. Bioinspir. Biomim. 13 (1), 016010.CrossRefGoogle ScholarPubMed
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3 (7), 17601765.CrossRefGoogle Scholar
Gibson, G. & Russell, I. 2006 Flying in tune: sexual recognition in mosquitoes. Curr. Biol. 16 (13), 13111316.CrossRefGoogle ScholarPubMed
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.CrossRefGoogle Scholar
Han, J.-s., Chang, J.W., Kim, J.-k. & Han, J.-h. 2015 Role of trailing-edge vortices on the hawkmothlike flapping wing. J. Aircraft 52 (4), 12561266.CrossRefGoogle Scholar
Hardin, J.C. & Pope, D.S. 1994 An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comput. Fluid Dyn. 6 (5), 323340.CrossRefGoogle Scholar
Hightower, B.J., Wijnings, P.W.A., Scholte, R., Ingersoll, R., Chin, D.D., Nguyen, J., Shorr, D. & Lentink, D. 2020 How hummingbirds hum: Oscillating aerodynamic forces explain timbre of the humming sound. arXiv:2009.01933.Google Scholar
Hirt, C.W., Amsden, A.A. & Cook, J.L. 1974 An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (3), 227253.CrossRefGoogle Scholar
Howe, M.S. 2003 Theory of Vortex Sound. Cambridge University Press.Google Scholar
Huang, Q., Bhat, S.S., Yeo, E.C., Young, J., Lai, J.C.S., Tian, F.-B. & Ravi, S. 2023 Power synchronisations determine the hovering flight efficiency of passively pitching flapping wings. J. Fluid Mech. 974, A41.CrossRefGoogle Scholar
Huang, Q., Liu, Z., Wang, L., Ravi, S., Young, J., Lai, J.C.S. & Tian, F.-B. 2022 Streamline penetration, velocity error, and consequences of the feedback immersed boundary method. Phys. Fluids 34 (9), 097101.CrossRefGoogle Scholar
Huang, W.-X. & Tian, F.-B. 2019 Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Engrs C: J. Mech. Engng Sci. 233 (23–24), 76177636.Google Scholar
Huang, Y. & Green, M.A. 2015 Detection and tracking of vortex phenomena using Lagrangian coherent structures. Exp. Fluids 56 (7), 112.CrossRefGoogle Scholar
Inada, Y., Aono, H., Liu, H. & Aoyama, T. 2009 Numerical analysis of sound generation of insect flapping wings. Theor. Appl. Mech. Japan 57, 437447.Google Scholar
Jardin, T. & David, L. 2015 Coriolis effects enhance lift on revolving wings. Phys. Rev. E 91 (3), 031001.CrossRefGoogle ScholarPubMed
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Ji, X., Wang, L., Ravi, S., Tian, F.-B., Young, J. & Lai, J.C.S. 2022 Influences of serrated trailing edge on the aerodynamic and aeroacoustic performance of a flapping wing during hovering flight. Phys. Fluids 34 (1), 011902.CrossRefGoogle Scholar
Ji, X., Wang, L., Ravi, S., Young, J., Lai, J.C.S. & Tian, F.-B. 2024 Aerodynamic and aeroacoustic performance of a pitching foil with trailing edge serrations at a high Reynolds number. Theor. Comput. Fluid Dyn. 38, 825844.CrossRefGoogle Scholar
Jones, A.R. & Babinsky, H. 2010 Unsteady lift generation on rotating wings at low Reynolds numbers. J. Aircraft 47 (3), 10131021.CrossRefGoogle Scholar
Jones, A.R. & Babinsky, H. 2011 Reynolds number effects on leading edge vortex development on a waving wing. Exp. Fluids 51 (1), 197210.CrossRefGoogle Scholar
Jones, A.R., Medina, A., Spooner, H. & Mulleners, K. 2016 Characterizing a burst leading-edge vortex on a rotating flat plate wing. Exp. Fluids 57 (4), 116.CrossRefGoogle Scholar
Kang, C.-k. & Shyy, W. 2013 Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. J. R. Soc. Interface 10 (85), 20130361.CrossRefGoogle ScholarPubMed
Kim, D. & Gharib, M. 2010 Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49, 329339.CrossRefGoogle Scholar
Lai, J.C.S. & Platzer, M.F. 1999 Jet characteristics of a plunging airfoil. AIAA J. 37 (12), 15291537.CrossRefGoogle Scholar
Lee, J., Choi, H. & Kim, H.-Y. 2015 A scaling law for the lift of hovering insects. J. Fluid Mech. 782, 479490.CrossRefGoogle Scholar
Lele, S. 1997 Computational aeroacoustics—a review. In 35th Aerospace Sciences Meeting and Exhibit, p. 18. AIAA.CrossRefGoogle Scholar
Li, G.-J. & Lu, X.-Y. 2012 Force and power of flapping plates in a fluid. J. Fluid Mech. 712, 598613.CrossRefGoogle Scholar
Liu, H., Ellington, C.P., Kawachi, K., Van Den Berg, C. & Willmott, A.P. 1998 A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201 (4), 461477.CrossRefGoogle ScholarPubMed
Liu, K., Liu, X. & Huang, H. 2022 Scaling the self-propulsive performance of pitching and heaving flexible plates. J. Fluid Mech. 936, A9.CrossRefGoogle Scholar
Lu, Y., Shen, G.X. & Lai, G.J. 2006 Dual leading-edge vortices on flapping wings. J. Exp. Biol. 209 (24), 50055016.CrossRefGoogle ScholarPubMed
Lyrintzis, A.S. 2003 Surface integral methods in computational aeroacoustics—from the (CFD) near-field to the (acoustic) far-field. Intl J. Aeroacoust. 2 (2), 95128.CrossRefGoogle Scholar
Medina, A. & Jones, A.R. 2016 Leading-edge vortex burst on a low-aspect-ratio rotating flat plate. Phys. Rev. Fluids 1 (4), 044501.CrossRefGoogle Scholar
Menon, K., Kumar, S. & Mittal, R. 2022 Contribution of spanwise and cross-span vortices to the lift generation of low-aspect-ratio wings: insights from force partitioning. Phys. Rev. Fluids 7, 114102.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Nagarajan, S., Hahn, S. & Lele, S. 2006 Prediction of sound generated by a pitching airfoil: a comparison of RANS and LES. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), p. 2516. AIAA.CrossRefGoogle Scholar
Nagarajan, S. & Lele, S. 2005 Sound generation by unsteady airfoil motions: a study using direct computation and acoustic analogy. In 11th AIAA/CEAS Aeroacoustics Conference, p. 2915. AIAA.CrossRefGoogle Scholar
Nedunchezian, K., Kang, C.-k. & Aono, H. 2019 Effects of flapping wing kinematics on the aeroacoustics of hovering flight. J. Sound Vib. 442, 366383.CrossRefGoogle Scholar
Peskin, C.S. 1972 Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10 (2), 252271.CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Platzer, M.F., Jones, K.D., Young, J. & Lai, J.C.S. 2008 Flapping wing aerodynamics: progress and challenges. AIAA J. 46 (9), 21362149.CrossRefGoogle Scholar
Poelma, C., Dickson, W.B. & Dickinson, M.H. 2006 Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41, 213225.CrossRefGoogle Scholar
Ravi, S., Kolomenskiy, D., Engels, T., Schneider, K., Wang, C., Sesterhenn, J. & Liu, H. 2016 Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci. Rep. 6 (1), 110.CrossRefGoogle ScholarPubMed
Ringuette, M.J., Milano, M. & Gharib, M. 2007 Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453468.CrossRefGoogle Scholar
Robert, D. & Göpfert, M.C. 2002 Acoustic sensitivity of fly antennae. J. Insect Physiol. 48 (2), 189196.CrossRefGoogle ScholarPubMed
Sandberg, R.D., Jones, L.E., Sandham, N.D. & Joseph, P.F. 2009 Direct numerical simulations of tonal noise generated by laminar flow past airfoils. J. Sound Vib. 320 (4–5), 838858.CrossRefGoogle Scholar
Sane, S.P. & Dickinson, M.H. 2001 The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204 (15), 26072626.CrossRefGoogle ScholarPubMed
Seo, J.-H., Hedrick, T.L. & Mittal, R. 2019 Mechanism and scaling of wing tone generation in mosquitoes. Bioinspir. Biomim. 15 (1), 016008.CrossRefGoogle ScholarPubMed
Seo, J.-H., Menon, K. & Mittal, R. 2022 A method for partitioning the sources of aerodynamic loading noise in vortex dominated flows. Phys. Fluids 34 (5), 053607.CrossRefGoogle Scholar
Shahzad, A., Tian, F.-B., Young, J. & Lai, J.C.S. 2016 Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover. Phys. Fluids 28 (11), 111901.CrossRefGoogle Scholar
Shahzad, A., Tian, F.-B., Young, J. & Lai, J.C.S. 2018 Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios. Phys. Fluids 30 (9), 091902.CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C-K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.CrossRefGoogle Scholar
Shyy, W., Trizila, P., Kang, C.-k. & Aono, H. 2009 Can tip vortices enhance lift of a flapping wing? AIAA J. 47 (2), 289293.CrossRefGoogle Scholar
Singer, B.A., Brentner, K.S., Lockard, D.P. & Lilley, G.M. 2000 Simulation of acoustic scattering from a trailing edge. J. Sound Vib. 230 (3), 541560.CrossRefGoogle Scholar
Spieth, H.T. 1974 Courtship behavior in drosophila. Annu. Rev. Entomol. 19 (1), 385405.CrossRefGoogle ScholarPubMed
Sueur, J., Tuck, E.J. & Robert, D. 2005 Sound radiation around a flying fly. J. Acoust. Soc. Am. 118 (1), 530538.CrossRefGoogle ScholarPubMed
Tian, F.-B. 2020 Hydrodynamic effects of mucus on swimming performance of an undulatory foil by using the DSD/SST method. Comput. Mech. 65 (3), 751761.CrossRefGoogle Scholar
Tian, F.-B., Luo, H., Song, J. & Lu, X.-Y. 2013 Force production and asymmetric deformation of a flexible flapping wing in forward flight. J. Fluids Struct. 36, 149161.CrossRefGoogle Scholar
Visbal, M.R. 2009 High-fidelity simulation of transitional flows past a plunging airfoil. AIAA J. 47 (11), 26852697.CrossRefGoogle Scholar
Wang, L. & Tian, F.-B. 2019 Numerical study of flexible flapping wings with an immersed boundary method: fluid–structure–acoustics interaction. J. Fluids Struct. 90, 396409.CrossRefGoogle Scholar
Wang, L. & Tian, F.-B. 2020 Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight. J. Fluids Struct. 99, 103165.CrossRefGoogle Scholar
Wang, L., Tian, F.-B. & Lai, J.C.S. 2020 An immersed boundary method for fluid–structure–acoustics interactions involving large deformations and complex geometries. J. Fluids Struct. 95, 102993.CrossRefGoogle Scholar
Warren, B., Gibson, G. & Russell, I.J. 2009 Sex recognition through midflight mating duets in culex mosquitoes is mediated by acoustic distortion. Curr. Biol. 19 (6), 485491.CrossRefGoogle ScholarPubMed
Wu, J., Liu, L. & Liu, T. 2018 Fundamental theories of aerodynamic force in viscous and compressible complex flows. Prog. Aerosp. Sci. 99, 2763.CrossRefGoogle Scholar
Wu, J.C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19 (4), 432441.CrossRefGoogle Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2007 Vorticity and Vortex Dynamics. Springer Science & Business Media.Google Scholar
Wu, J.-Z., Pan, Z.-L. & Lu, X.-Y. 2005 Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys. Fluids 17 (9), 098102.CrossRefGoogle Scholar
Young, J. & Garratt, M. 2020 Drones become even more insect-like. Science 368 (6491), 586587.CrossRefGoogle ScholarPubMed
Young, J. & Lai, J.C.S. 2007 Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J. 45 (7), 16951702.CrossRefGoogle Scholar
Zhou, T., Sun, Y., Fattah, R., Zhang, X. & Huang, X. 2019 An experimental study of trailing edge noise from a pitching airfoil. J. Acoust. Soc. Am. 145 (4), 20092021.CrossRefGoogle ScholarPubMed