Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-28T08:25:07.013Z Has data issue: false hasContentIssue false

Eulerian–Lagrangian direct numerical simulation of turbulence modulation in a compressible multiphase transverse jet

Published online by Cambridge University Press:  05 December 2024

Haiou Wang
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Wei Xiao
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Chengming Wang
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Kun Luo
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Jianren Fan*
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
*
Email address for correspondence: [email protected]

Abstract

In this study, direct numerical simulation of the particle dispersion and turbulence modulation in a sonic transverse jet injected into a supersonic cross-flow with a Mach number of 2 was carried out with the Eulerian–Lagrangian point-particle method. One single-phase case and two particle-laden cases with different particle diameters were simulated. The jet and particle trajectories, the dispersion characteristics of particles, and the modulation effect of particles on the flow were investigated systematically. It was found that large particles primarily accumulate around shear layer structures situated on the windward side of the jet trajectory. In contrast, small particles exhibit radial transport, accessing both upstream and downstream recirculation zones. Moreover, small particles disperse extensively within the boundary layer and large-scale shear layers, evidently influenced by the streamwise vortices. The particles increase the mean wall-normal velocity near the wall in the wake region of the transverse jet, while reducing the mean streamwise and wall-normal velocities in outer regions. Particles significantly alter the flow velocity adjacent to shock fronts. In particular, the turbulent fluctuations near the windward barrel shock and bow shock are reduced, while those around the leeward barrel shock are increased. An upward displacement of the bow shock in the wall-normal direction is also observed due to particles. In the regions away from the shocks, small particles tend to amplify the Reynolds stress, while large particles attenuate the turbulent kinetic energy.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J.C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.CrossRefGoogle Scholar
Aurenhammer, F. 1991 Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23 (3), 345405.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Ben-Yakar, A., Mungal, M.G. & Hanson, R.K. 2006 Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18 (2), 026101.CrossRefGoogle Scholar
Beresh, S.J., Henfling, J.F., Erven, R.J. & Spillers, R.W. 2005 Penetration of a transverse supersonic jet into a subsonic compressible crossflow. AIAA J. 43 (2), 379389.CrossRefGoogle Scholar
Bergthorson, J.M. 2018 Recyclable metal fuels for clean and compact zero-carbon power. Prog. Energy Combust. Sci. 68, 169196.CrossRefGoogle Scholar
Campolo, M., Salvetti, M.V. & Soldati, A. 2005 Mechanisms for microparticle dispersion in a jet in crossflow. AlChE J. 51 (1), 2843.CrossRefGoogle Scholar
Chai, X., Iyer, P.S. & Mahesh, K. 2015 Numerical study of high speed jets in crossflow. J. Fluid Mech. 785, 152188.CrossRefGoogle Scholar
Chen, G., Wang, H., Luo, K. & Fan, J. 2022 Two-way coupled turbulent particle-laden boundary layer combustion over a flat plate. J. Fluid Mech. 948, A12.CrossRefGoogle Scholar
Dai, Q., Luo, K., Jin, T. & Fan, J. 2017 Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence. J. Fluid Mech. 832, 438482.CrossRefGoogle Scholar
Dickmann, D.A. & Lu, F.K. 2009 Shock/boundary-layer interaction effects on transverse jets in crossflow over a flat plate. J. Spacecr. Rockets 46 (6), 11321141.CrossRefGoogle Scholar
Duan, L., Choudhari, M.M. & Wu, M. 2014 Numerical study of acoustic radiation due to a supersonic turbulent boundary layer. J. Fluid Mech. 746, 165192.CrossRefGoogle Scholar
Duan, L., Choudhari, M.M. & Zhang, C. 2016 Pressure fluctuations induced by a hypersonic turbulent boundary layer. J. Fluid Mech. 804, 578607.CrossRefGoogle ScholarPubMed
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15 (2), 315329.CrossRefGoogle Scholar
Fessler, J.R., Kulick, J.D. & Eaton, J.K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.CrossRefGoogle Scholar
Fric, T.F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Génin, F. & Menon, S. 2010 Dynamics of sonic jet injection into supersonic crossflow. J. Turbul. 11, N4.CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 1995 Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propul. Power 11 (2), 315323.CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 1997 a Compressibility effects in supersonic transverse injection flowfields. Phys. Fluids 9 (5), 14481461.CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 1997 b Large structure convection velocity measurements in compressible transverse injection flowfields. Exp. Fluids 22 (5), 397407.CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 2000 Transverse injection from circular and elliptic nozzles into a supersonic crossflow. J. Propul. Power 16 (3), 449457.CrossRefGoogle Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C.M. 2013 Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 715, 134162.CrossRefGoogle Scholar
Hadinoto, K., Jones, E.N., Yurteri, C. & Curtis, J.S. 2005 Reynolds number dependence of gas-phase turbulence in gas–particle flows. Intl J. Multiphase Flow 31 (4), 416434.CrossRefGoogle Scholar
Hunt, J.C., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases-II, Proceedings of the 1988 Summer Program. Center for Turbulence Research.Google Scholar
Jin, T., Luo, K., Dai, Q. & Fan, J. 2016 a Direct numerical simulation on supersonic turbulent reacting and non-reacting spray jet in heated coflow. Fuel 164, 267276.CrossRefGoogle Scholar
Jin, T., Luo, K., Dai, Q. & Fan, J. 2016 b Simulations of cellular detonation interaction with turbulent flows. AIAA J. 54 (2), 419433.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10 (11), 14251429.CrossRefGoogle Scholar
Karagozian, A.R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36 (5), 531553.CrossRefGoogle Scholar
Kawai, S. & Lele, S.K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.CrossRefGoogle Scholar
Li, G. & Lin, J. 2010 Characteristics of particle dispersion in a jet in cross-flow based on computational fluid dynamics. In 2010 Asia-Pacific Power and Energy Engineering Conference, pp. 1–4. IEEE.CrossRefGoogle Scholar
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.CrossRefGoogle Scholar
Loth, E. 2008 Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46 (9), 22192228.CrossRefGoogle Scholar
Luo, K., Jin, T., Lu, S. & Fan, J. 2013 DNS analysis of a three-dimensional supersonic turbulent lifted jet flame. Fuel 108, 691698.CrossRefGoogle Scholar
Mandilas, C., Karagiannakis, G., Konstandopoulos, A.G., Beatrice, C., Lazzaro, M., Di Blasio, G., Molina, S., Pastor, J.V. & Gil, A. 2014 Study of basic oxidation and combustion characteristics of aluminum nanoparticles under enginelike conditions. Energy Fuels 28, 34303441.CrossRefGoogle Scholar
Martín, M.P., Taylor, E.M., Wu, M. & Weirs, V.G. 2006 A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220 (1), 270289.CrossRefGoogle Scholar
Mehrabadi, M., Horwitz, J.A.K., Subramaniam, S. & Mani, A. 2018 A direct comparison of particle-resolved and point-particle methods in decaying turbulence. J. Fluid Mech. 850, 336369.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech. 574, 5984.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2011 Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106 (8), 084501.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2012 Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.CrossRefGoogle Scholar
Paull, A., Stalker, R.J. & Mee, D.J. 1995 Supersonic combustion ramjet propulsion experiments in a shock tunnel. In Shock Tunnel Studies of Scramjet Phenomena 1994. NASA Tech. Rep. NASA-CR-199445. NASA.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49 (6), 13071312.CrossRefGoogle Scholar
Poggie, J., Bisek, N.J. & Gosse, R. 2015 Resolution effects in compressible, turbulent boundary layer simulations. Comput. Fluids 120, 5769.CrossRefGoogle Scholar
Poinsot, T.J. & Lelef, S.K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.CrossRefGoogle Scholar
Rana, Z.A., Thornber, B. & Drikakis, D. 2011 Transverse jet injection into a supersonic turbulent cross-flow. Phys. Fluids 23 (4), 046103.CrossRefGoogle Scholar
Rothstein, A. & Wantuck, P. 1992 A study of the normal injection of hydrogen into a heated supersonicflow using planar laser-induced fluorescence. In 28th Joint Propulsion Conference and Exhibit 6–8 July, Nashville, TN, USA, p. 3423. AIAA.CrossRefGoogle Scholar
Salewski, M. & Fuchs, L. 2008 Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow. J. Turbul. 9, N46.CrossRefGoogle Scholar
Santiago, J.G. & Dutton, J.C. 1997 Velocity measurements of a jet injected into a supersonic crossflow. J. Propul. Power 13 (2), 264273.CrossRefGoogle Scholar
Schiller, L. & Naumann, A. 1933 Über die grundlegenden berechnungen bei der schwerkraftaufbereitung. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Shu, C.-W. 2020 Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701762.CrossRefGoogle Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Smith, S.H. & Mungal, M.G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2 (7), 11911203.CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A: Fluid Dyn. 3 (5), 11691178.CrossRefGoogle Scholar
Sun, M. & Hu, Z. 2018 a Formation of surface trailing counter-rotating vortex pairs downstream of a sonic jet in a supersonic cross-flow. J. Fluid Mech. 850, 551583.CrossRefGoogle Scholar
Sun, M. & Hu, Z.W. 2018 b Generation of upper trailing counter-rotating vortices of a sonic jet in a supersonic crossflow. AIAA J. 56 (3), 10471059.CrossRefGoogle Scholar
Sun, M. & Hu, Z.-W. 2018 c Mixing in nearwall regions downstream of a sonic jet in a supersonic crossflow at Mach 2.7. Phys. Fluids 30 (10), 106102.CrossRefGoogle Scholar
Sun, M., Liu, Y. & Hu, Z. 2019 Turbulence decay in a supersonic boundary layer subjected to a transverse sonic jet. J. Fluid Mech. 867, 216249.CrossRefGoogle Scholar
Sundaram, S. & Collins, L.R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar
Sundaram, S. & Collins, L.R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105143.CrossRefGoogle Scholar
Sutherland, W. 1893 LII. The viscosity of gases and molecular force. Lond. Edinb. Dublin Phil. Mag. J. Sci. 36 (223), 507531.CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.CrossRefGoogle Scholar
VanLerberghe, W.M., Santiago, J.G., Dutton, J.C. & Lucht, R.P. 2000 Mixing of a sonic transverse jet injected into a supersonic flow. AIAA J. 38 (3), 470479.CrossRefGoogle Scholar
Vranos, A. & Nolan, J.J. 1965 Supersonic mixing of a light gas and air. In AIAA Propulsion Joint Specialist Conference. AIAA.Google Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Xiao, W., Jin, T., Luo, K., Dai, Q. & Fan, J. 2020 Eulerian–Lagrangian direct numerical simulation of preferential accumulation of inertial particles in a compressible turbulent boundary layer. J. Fluid Mech. 903, A19.CrossRefGoogle Scholar
Yuan, L.L. & Street, R.L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10 (9), 23232335.CrossRefGoogle Scholar