Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-05-02T11:15:45.580Z Has data issue: false hasContentIssue false

Enhancing tip vortices to improve the lift production through shear layers in flapping-wing flow control

Published online by Cambridge University Press:  12 November 2024

Bruce Ruishu Jin
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Li Wang
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Sridhar Ravi
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
John Young
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Joseph C.S. Lai
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Fang-Bao Tian*
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
*
Email address for correspondence: [email protected]

Abstract

Flow control of a low-aspect-ratio flat-plate heaving wing at an average angle of attack of $10^{\circ }$ by a steady-blowing jet is numerically studied by using a feedback immersed boundary–lattice Boltzmann method. Blowing jets at the leading edge, mid-chord and trailing edge are considered. The wing enjoys the highest lift production with the trailing-edge downstream blowing jet, which improves the average lift by 50.0 % at $Re = 1000$ and 22.9 % at $Re = 5000$ through the enhancement of the tip vortex circulation caused by the increase in the mass flux of the shear layer at the wing tips. This increase in mass flux decreases as $Re$ increases from 1000 to 5000 due to its self-limiting mechanism. A mid-chord vertical blowing jet induces a middle vortex which enhances the lift production but the enhancement is smaller than that of trailing-edge downstream blowing jet. Other jet arrangements do not significantly increase the lift coefficient, but the mid-chord upstream blowing jet experiences a significant reduction in the drag coefficient, leading to an increase of 50.6 % in the average lift-to-drag ratio. The effectiveness of the flow control is not significantly affected by the aspect ratio.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aidun, C.K. & Clausen, J.R. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42 (1), 439472.CrossRefGoogle Scholar
Akkala, J.M. & Buchholz, J.H.J. 2017 Vorticity transport mechanisms governing the development of leading-edge vortices. J. Fluid Mech. 829, 512537.CrossRefGoogle Scholar
Anderson, J. 2011 Fundamentals of Aerodynamics. McGraw Hill.Google Scholar
Anderson, J.M., Streitlien, K., Barrett, D.S. & Triantafyllou, M.S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Azuma, A. 2012 The Biokinetics of Flying and Swimming. Springer.Google Scholar
Baik, Y.S. 2011 Unsteady force generation and vortex dynamics of pitching and plunging airfoils at low Reynolds number. PhD thesis, University of Michigan.CrossRefGoogle Scholar
Baik, Y.S., Bernal, L.P., Granlund, K. & Ol, M.V. 2012 Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 3768.CrossRefGoogle Scholar
van den Berg, C. & Ellington, C.P. 1997 The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Phil. Trans. R. Soc. Lond. B Biol. Sci. 352 (1351), 329340.CrossRefGoogle Scholar
Bisplinghoff, R.L., Ashley, H. & Halfman, R.L. 2013 Aeroelasticity. Courier Corporation.Google Scholar
Bomphrey, R.J., Nakata, T., Henningsson, P. & Lin, H.-T. 2016 Flight of the dragonflies and damselflies. Phil. Trans. R. Soc. Lond. B Biol. Sci. 371 (1704), 20150389.CrossRefGoogle ScholarPubMed
Buchholz, J.H.J., Green, M.A. & Smits, A.J. 2011 Scaling the circulation shed by a pitching panel. J. Fluid Mech. 688, 591601.CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.CrossRefGoogle ScholarPubMed
Carr, L.W. 1988 Progress in analysis and prediction of dynamic stall. J. Aircraft 25 (1), 617.CrossRefGoogle Scholar
Carruthers, A.C., Thomas, A.L.R. & Taylor, G.K. 2007 Automatic aeroelastic devices in the wings of a steppe eagle aquila nipalensis. J. Expl Biol. 210 (23), 41364149.CrossRefGoogle ScholarPubMed
Chen, C., Seele, R. & Wygnanski, I. 2013 Flow control on a thick airfoil using suction compared to blowing. AIAA J. 51 (6), 14621472.CrossRefGoogle Scholar
Chen, S. & Doolen, G.D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
Chng, T.L., Rachman, A., Tsai, H.M. & Zha, G.-C. 2009 Flow control of an airfoil via injection and suction. J. Aircraft 46 (1), 291300.CrossRefGoogle Scholar
Choudhry, A., Leknys, R., Arjomandi, M. & Kelso, R. 2014 An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188208.CrossRefGoogle Scholar
Coreixas, C., Wissocq, G., Puigt, G., Boussuge, J.-F. & Sagaut, P. 2017 Recursive regularization step for high-order lattice Boltzmann methods. Phys. Rev. E 96, 033306.CrossRefGoogle ScholarPubMed
Corke, T. & Post, M. 2005 Overview of plasma flow control: concepts, optimization, and applications. AIAA-2005-563.CrossRefGoogle Scholar
Decroon, G.C.H.E., Percin, M., Remes, B.D.W., Ruijsink, R. & de Wagter, C. 2016 The Delfly: Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot. Springer Science+Business Media.CrossRefGoogle Scholar
Dickinson, M.H., Lehmann, F.-O. & Sane, S.P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.CrossRefGoogle ScholarPubMed
Doligalski, T.L., Smith, C.R. & Walker, J.D.A. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26 (1), 573616.CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F.M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Drucker, E.G. & Lauder, G.V. 2002 Experimental hydrodynamics of fish locomotion: functional insights from wake visualization1. Integr. Compar. Biol. 42 (2), 243257.CrossRefGoogle Scholar
Eldredge, J.D. & Jones, A.R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51 (1), 75104.CrossRefGoogle Scholar
Ellington, C.P. 1999 The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Expl Biol. 202 (23), 34393448.CrossRefGoogle ScholarPubMed
Ellington, C.P., Van Den Berg, C., Willmott, A.P. & Thomas, A.L.R. 1996 Leading-edge vortices in insect flight. Nature 384 (6610), 626630.CrossRefGoogle Scholar
Fahland, G., Stroh, A., Frohnapfel, B., Atzori, M., Vinuesa, R., Schlatter, P. & Gatti, D. 2021 Investigation of blowing and suction for turbulent flow control on airfoils. AIAA J. 59 (11), 44224436.CrossRefGoogle Scholar
Feng, L.-H., Li, Z.-Y. & Chen, Y.-L. 2020 Lift enhancement strategy and mechanism for a plunging airfoil based on vortex control. Phys. Fluids 32 (8), 087116.CrossRefGoogle Scholar
Fish, F.E. & Lauder, G.V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38 (1), 193224.CrossRefGoogle Scholar
Gao, A.-K., Cantwell, C.D., Son, O. & Sherwin, S.J. 2023 Three-dimensional transition and force characteristics of low-Reynolds-number flows past a plunging airfoil. J. Fluid Mech. 973, A43.CrossRefGoogle Scholar
Garmann, D.J. & Visbal, M.R. 2014 Dynamics of revolving wings for various aspect ratios. J. Fluid Mech. 748, 932956.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 3 (7), 17601765.CrossRefGoogle Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.CrossRefGoogle Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (9), 1422.CrossRefGoogle Scholar
Greenblatt, D. & Wygnanski, I.J. 2000 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36 (7), 487545.CrossRefGoogle Scholar
Griffith, B.E. & Patankar, N.A. 2020 Immersed methods for fluid–structure interaction. Annu. Rev. Fluid Mech. 52 (1), 421448.CrossRefGoogle ScholarPubMed
Guo, Z., Zheng, C. & Shi, B. 2002 a Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308.CrossRefGoogle ScholarPubMed
Guo, Z., Zheng, C. & Shi, B. 2002 b An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14 (6), 20072010.CrossRefGoogle Scholar
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C. & Ho, C.-M. 2003 Unsteady aerodynamics and flow control for flapping wing flyers. Prog. Aerosp. Sci. 39 (8), 635681.CrossRefGoogle Scholar
Huang, L., Huang, P.G., LeBeau, R.P. & Hauser, T. 2004 Numerical study of blowing and suction control mechanism on NACA0012 airfoil. J. Aircraft 41 (5), 10051013.CrossRefGoogle Scholar
Huang, Q., Bhat, S.S., Yeo, E.C., Young, J., Lai, J.C.S., Tian, F.-B. & Ravi, S. 2023 Power synchronisations determine the hovering flight efficiency of passively pitching flapping wings. J. Fluid Mech. 974, A41.CrossRefGoogle Scholar
Huang, Q., Liu, Z., Wang, L., Ravi, S., Young, J., Lai, J.C.S. & Tian, F.-B. 2022 Streamline penetration, velocity error, and consequences of the feedback immersed boundary method. Phys. Fluids 34 (9), 097101.CrossRefGoogle Scholar
Huang, W.-X. & Tian, F.-B. 2019 Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Engrs C J. Mech. Engng Sci. 233 (23-24), 76177636.CrossRefGoogle Scholar
Jardin, T. & David, L. 2014 Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings. Phys. Rev. E 90, 013011.CrossRefGoogle ScholarPubMed
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. 285, 6994.Google Scholar
Ji, X., Wang, L., Ravi, S., Tian, F.-B., Young, J. & Lai, J.C.S. 2022 Influences of serrated trailing edge on the aerodynamic and aeroacoustic performance of a flapping wing during hovering flight. Phys. Fluids 34 (1), 011902.CrossRefGoogle Scholar
Jones, A.R. & Babinsky, H. 2010 Unsteady lift generation on rotating wings at low Reynolds numbers. J. Aircraft 47 (3), 10131021.CrossRefGoogle Scholar
Jones, K., Duggan, S. & Platzer, M. 2001 Flapping-wing propulsion for a micro air vehicle. In 39th Aerospace Sciences Meeting and Exhibit, p. 126. AIAA.CrossRefGoogle Scholar
Jones, K.D. & Platzer, M.F. 2010 Flow control using flapping wings for an efficient low-speed micro-air vehicle. In Flying Insects and Robots (ed. D. Floreano, J.C. Zufferey, M.V. Srinivasan & C. Ellington), pp. 159–169. Springer.CrossRefGoogle Scholar
Kissing, J., Stumpf, B., Kriegseis, J., Hussong, J. & Tropea, C. 2021 Delaying leading edge vortex detachment by plasma flow control at topologically critical locations. Phys. Rev. Fluids 6, 023101.CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2017 The Lattice Boltzmann Method. Springer.CrossRefGoogle Scholar
Latt, J. & Chopard, B. 2006 Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul. 72 (2), 165168.CrossRefGoogle Scholar
Li, Z.-Y., Feng, L.-H., Kissing, J., Tropea, C. & Wang, J.-J. 2020 Experimental investigation on the leading-edge vortex formation and detachment mechanism of a pitching and plunging plate. J. Fluid Mech. 901, A17.CrossRefGoogle Scholar
Lilly, D.K. 1992 A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A Fluid Dyn. 4 (3), 633635.CrossRefGoogle Scholar
Liu, H., Ellington, C.P., Kawachi, K., Van Den Berg, C. & Willmott, A.P. 1998 A computational fluid dynamic study of hawkmoth hovering. J. Expl Biol. 201 (4), 461477.CrossRefGoogle ScholarPubMed
Liu, H., Wang, S. & Liu, T. 2024 Vortices and forces in biological flight: insects, birds, and bats. Annu. Rev. Fluid Mech. 56, 147–170.CrossRefGoogle Scholar
Ma, J., Wang, Z., Young, J., Lai, J.C.S., Sui, Y. & Tian, F.-B. 2020 An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries. J. Comput. Phys. 415, 109487.CrossRefGoogle Scholar
Malaspinas, O. & Sagaut, P. 2012 Consistent subgrid scale modelling for lattice Boltzmann methods. J. Fluid Mech. 700, 514542.CrossRefGoogle Scholar
Maxworthy, T. 1979 Experiments on the weis-fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93 (1), 4763.CrossRefGoogle Scholar
Maxworthy, T. 1981 The fluid dynamics of insect flight. Annu. Rev. Fluid Mech. 13 (1), 329350.CrossRefGoogle Scholar
McCroskey, W.J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14 (1), 285311.CrossRefGoogle Scholar
Menon, K., Kumar, S. & Mittal, R. 2022 Contribution of spanwise and cross-span vortices to the lift generation of low-aspect-ratio wings: insights from force partitioning. Phys. Rev. Fluids 7, 114102.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (1), 239261.CrossRefGoogle Scholar
Moriche, M., Flores, O. & García-Villalba, M. 2017 On the aerodynamic forces on heaving and pitching airfoils at low Reynolds number. J. Fluid Mech. 828, 395423.CrossRefGoogle Scholar
Moulin, B. & Karpel, M. 2007 Gust loads alleviation using special control surfaces. J. Aircraft 44 (1), 1725.CrossRefGoogle Scholar
Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R. & Hedenström, A. 2008 Leading-edge vortex improves lift in slow-flying bats. Science 319 (5867), 12501253.CrossRefGoogle ScholarPubMed
Mulleners, K. & Raffel, M. 2012 The onset of dynamic stall revisited. Exp. Fluids 52, 779793.CrossRefGoogle Scholar
Othman, A.K., Zekry, D.A., Saro-Cortes, V., Lee, K.J.“Paul” & Wissa, A.A. 2023 Aerial and aquatic biological and bioinspired flow control strategies. Commun. Engng 2, 30.CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.CrossRefGoogle Scholar
Pesavento, U. & Wang, Z.J. 2009 Flapping wing flight can save aerodynamic power compared to steady flight. Phys. Rev. Lett. 103, 118102.CrossRefGoogle ScholarPubMed
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Pines, D.J. & Bohorquez, F. 2006 Challenges facing future micro-air-vehicle development. J. Aircraft 43 (2), 290305.CrossRefGoogle Scholar
Pitt Ford, C.W. & Babinsky, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720, 280313.CrossRefGoogle Scholar
Platzer, M.F., Jones, K.D., Young, J. & Lai, J.C.S. 2008 Flapping wing aerodynamics: progress and challenges. AIAA J. 46 (9), 21362149.CrossRefGoogle Scholar
Ramamurti, R. & Sandberg, W.C. 2002 A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Expl Biol. 205 (10), 15071518.CrossRefGoogle ScholarPubMed
Rao, C. & Liu, H. 2020 Effects of Reynolds number and distribution on passive flow control in owl-inspired leading-edge serrations. Integr. Compar. Biol. 60 (5), 11351146.CrossRefGoogle ScholarPubMed
Rees, C.J.C. 1975 Aerodynamic properties of an insect wing section and a smooth aerofoil compared. Nature 258, 141142.CrossRefGoogle Scholar
Rival, D.E., Kriegseis, J., Schaub, P., Widmann, A. & Tropea, C. 2014 Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp. Fluids 55 (1), 18.CrossRefGoogle Scholar
Rose, J.B.R., Natarajan, S.G. & Gopinathan, V.T. 2021 Biomimetic flow control techniques for aerospace applications: a comprehensive review. Rev. Environ. Sci. Bio/Technol. 20, 645677.CrossRefGoogle Scholar
Rosenhead, L. 1963 Laminar Boundary Layers. Oxford University Press.Google Scholar
Saffman, P.G. 1993 Vortex Dynamics. Cambridge Monographs on Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Sane, S.P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206 (23), 41914208.CrossRefGoogle ScholarPubMed
Sangwan, J., Sengupta, T.K. & Suchandra, P. 2017 Investigation of compressibility effects on dynamic stall of pitching airfoil. Phys. Fluids 29 (7), 076104.CrossRefGoogle Scholar
Schlichting, H., Kestin, J. & Shapiro, A.H. 1961 Boundary Layer Theory. McGraw-Hill.Google Scholar
Sengupta, T.K. 2015 Theoretical and Computational Aerodynamics. Wiley.Google Scholar
Sengupta, T.K., Jha, S.K., Sengupta, A., Joshi, B. & Sundaram, P. 2023 Continuum perturbation field in quiescent ambience: common foundation of flows and acoustics. Phys. Fluids 35 (5), 056111.CrossRefGoogle Scholar
Sengupta, T.K., Sharma, P.K., Sengupta, A. & Suman, V.K. 2019 Tracking disturbances in transitional and turbulent flows: coherent structures. Phys. Fluids 31 (12), 124106.CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.-K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.CrossRefGoogle Scholar
Shyy, W., Kang, C.-K., Chirarattananon, P., Ravi, S. & Liu, H. 2016 Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. A Math. Phys. Engng Sci. 472 (2186), 20150712.Google ScholarPubMed
Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H. 2008 Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.Google Scholar
Shyy, W. & Liu, H. 2007 Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J. 45 (12), 28172819.CrossRefGoogle Scholar
Shyy, W., Trizila, P., Kang, C.-K. & Aono, H. 2009 Can tip vortices enhance lift of a flapping wing? AIAA J. 47 (2), 289293.CrossRefGoogle Scholar
Taira, K. & Colonius, T. 2009 a Effect of tip vortices in low-Reynolds-number poststall flow control. AIAA J. 47 (3), 749756.CrossRefGoogle Scholar
Taira, K. & Colonius, T. 2009 b Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
Taylor, G.K., Nudds, R.L. & Thomas, A.L.R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425 (6959), 707711.CrossRefGoogle Scholar
Thielicke, W. & Stamhuis, E.J. 2015 The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale. J. Fluid Mech. 768, 240260.CrossRefGoogle Scholar
Tian, F.-B., Dai, H., Luo, H., Doyle, J.F. & Rousseau, B. 2014 Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451469.CrossRefGoogle Scholar
Tian, F.-B., Tobing, S., Young, J., Lai, J.C.S., Walker, S.M., Taylor, G.K. & Thomas, A.L.R. 2019 Aerodynamic characteristics of hoverflies during hovering flight. Comput. Fluids 183, 7583.CrossRefGoogle Scholar
Tobalske, B.W. & Dial, K.P. 1996 Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J. Expl Biol. 199 (2), 263280.CrossRefGoogle Scholar
Touil, H., Ricot, D. & Lévêque, E. 2014 Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method. J. Comput. Phys. 256, 220233.CrossRefGoogle Scholar
Triantafyllou, G.S., Triantafyllou, M.S. & Grosenbaugh, M.A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.CrossRefGoogle Scholar
Vargas, A., Mittal, R. & Dong, H. 2008 A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspir. Biomim. 3 (2), 026004.CrossRefGoogle ScholarPubMed
Videler, J.J., Stamhuis, E.J. & Povel, G.D.E. 2004 Leading-edge vortex lifts swifts. Science 306 (5703), 19601962.CrossRefGoogle ScholarPubMed
Visbal, M.R. 2009 High-fidelity simulation of transitional flows past a plunging airfoil. AIAA J. 47 (11), 26852697.CrossRefGoogle Scholar
Visbal, M.R., Yilmaz, T.O. & Rockwell, D. 2013 Three-dimensional vortex formation on a heaving low-aspect-ratio wing: computations and experiments. J. Fluids Struct. 38, 5876.CrossRefGoogle Scholar
Von Ellenrieder, K.D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129138.CrossRefGoogle Scholar
Walker, S.M., Thomas, A.L.R. & Taylor, G.K. 2012 Operation of the alula as an indicator of gear change in hoverflies. J. R. Soc. Interface 9 (71), 11941207.CrossRefGoogle ScholarPubMed
Wang, C. & Tang, H. 2018 Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control. Bioinspir. Biomim. 13 (4), 046005.CrossRefGoogle ScholarPubMed
Wang, L., Liu, Z., Jin, B.R., Huang, Q., Young, J. & Tian, F.-B. 2024 Wall-modeled large eddy simulation in the immersed boundary-lattice Boltzmann method. Phys. Fluids 36 (3), 035167.CrossRefGoogle Scholar
Wang, L. & Tian, F.-B. 2022 Sound generated by the flow around an airfoil with an attached flap: from passive fluid–structure interaction to active control. J. Fluids Struct. 111, 103571.CrossRefGoogle Scholar
Wang, S., Zhang, X., He, G. & Liu, T. 2015 Evaluation of lift formulas applied to low-Reynolds-number unsteady flows. AIAA J. 53 (1), 161175.CrossRefGoogle Scholar
Widmann, A. & Tropea, C. 2015 Parameters influencing vortex growth and detachment on unsteady aerodynamic profiles. J. Fluid Mech. 773, 432459.CrossRefGoogle Scholar
Wilga, C.D. & Lauder, G.V. 1999 Locomotion in sturgeon: function of the pectoral fins. J. Expl Biol. 202 (18), 24132432.CrossRefGoogle ScholarPubMed
Wojcik, C.J. & Buchholz, J.H.J. 2014 Parameter variation and the leading-edge vortex of a rotating flat plate. AIAA J. 52 (2), 348357.CrossRefGoogle Scholar
Wu, J.-Z., Lu, X.-Y., Denny, A.G., Fan, M. & Wu, J.-M. 1998 Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 2158.CrossRefGoogle Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2007 Vorticity and Vortex Dynamics. Springer Science & Business Media.Google Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2015 Vortical Fluid-Dynamic Force and Moment, pp. 283–323. Springer.CrossRefGoogle Scholar
Wu, J.-Z. & Wu, J.M. 1996 Vorticity Dynamics on Boundaries. Advances in Applied Mechanics, vol. 32, pp. 119–275. Elsevier.CrossRefGoogle Scholar
Xia, X. & Mohseni, K. 2023 A theory on leading-edge vortex stabilization by spanwise flow. J. Fluid Mech. 970, R1.CrossRefGoogle Scholar
Xu, H. & Sagaut, P. 2013 Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods. J. Comput. Phys. 245, 1442.CrossRefGoogle Scholar
Xu, L., Tian, F.-B., Young, J. & Lai, J.C.S. 2018 A novel geometry-adaptive cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high reynolds numbers. J. Comput. Phys. 375, 2256.CrossRefGoogle Scholar
Yu, D., Mei, R. & Shyy, W. 2002 A multi-block lattice Boltzmann method for viscous fluid flows. Intl J. Numer. Meth. Fluids 39 (2), 99120.CrossRefGoogle Scholar
Zurman-Nasution, A.N., Ganapathisubramani, B. & Weymouth, G.D. 2020 Influence of three-dimensionality on propulsive flapping. J. Fluid Mech. 886, A25.CrossRefGoogle Scholar