Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-30T10:39:47.298Z Has data issue: false hasContentIssue false

Dynamic characteristic of transonic aeroelasticity affected by fluid mode in pre-buffet flow

Published online by Cambridge University Press:  12 November 2024

Zihao Dou
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
Chuanqiang Gao*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
Weiwei Zhang
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
*
Email address for correspondence: [email protected]

Abstract

Transonic aeroelasticity remains a significant challenge in aerospace. The coupling mechanism of aeroelastic problems involving the coexistence of fluid modes and multiple structural modes still needs further investigation. For this purpose, we analysed the dynamic characteristic of a two-degree-of-freedom (2DOF) NACA0012 airfoil in pre-buffet flow. First, we constructed an aeroelastic reduced-order model, which can represent near-unstable transonic flow using the dominant fluid mode. Then, the flutter mechanism was investigated by studying the main eigenvalues of the model that vary with the natural pitching frequency. The results revealed that the existence of the fluid mode transitions the transonic flutter type from coupled-mode flutter to single-DOF (SDOF) flutter, which leads to a reduction in the flutter boundary. Under the effect of the fluid mode, the system produces six aeroelastic phenomena at different structural natural frequencies, including SDOF heaving/pitching flutter, heaving/pitching instability within coupled-mode flutter, forced vibration and stable state. Moreover, we identified two types of SDOF flutter in the 2DOF system. The first type corresponds to the traditional SDOF flutter, where the coupling of other modes has a small impact on the system's stability in most cases. However, within specific ranges of natural frequencies, this type of SDOF flutter may disappear due to coupling with other modes. The second type of SDOF flutter is characterized by strong coupling dominated by the unstable mode. It arises from the interaction among the flow, heaving and pitching modes, and does not manifest in the absence of any of these modes.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahn, H.T. & Kallinderis, Y. 2006 Strongly coupled flow/structure interactions with a geometrically conservative ale scheme on general hybrid meshes. J. Comput. Phys. 219 (2), 671696.CrossRefGoogle Scholar
Badcock, K.J., Timme, S., Marques, S., Khodaparast, H., Prandina, M., Mottershead, J.E., Swift, A., Da Ronch, A. & Woodgate, M.A. 2011 Transonic aeroelastic simulation for instability searches and uncertainty analysis. Prog. Aerosp. Sci. 47 (5), 392423.CrossRefGoogle Scholar
Bai, C.-Y. & Wu, Z.-N. 2017 Size and shape of shock waves and slipline for Mach reflection in steady flow. J. Fluid Mech. 818, 116140.CrossRefGoogle Scholar
Bendiksen, O.O. 2011 Review of unsteady transonic aerodynamics: theory and applications. Prog. Aerosp. Sci. 47 (2), 135167.CrossRefGoogle Scholar
Cheng, Z., Lien, F.-S., Dowell, E.H., Yee, E., Wang, R. & Zhang, J.H. 2023 Critical effect of fore-aft tapering on galloping triggering for a trapezoidal body. J. Fluid Mech. 967, A18.CrossRefGoogle Scholar
Chwalowski, P., Massey, S.J., Jacobson, K., Silva, W.A. & Stanford, B. 2022 Progress on transonic flutter and shock buffet computations in support of the third aeroelastic prediction workshop. AIAA SciTech 2022 Forum.CrossRefGoogle Scholar
Crouch, J.D., Garbaruk, A., Magidov, D. & Travin, A. 2009 Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357369.CrossRefGoogle Scholar
Dansberry, B., Durham, M., Bennett, R., Rivera, J., Silva, W., Wieseman, C. & Turnock, D. 1993 Experimental unsteady pressures at flutter on the supercritical wing benchmark model. In 34th Structures, Structural Dynamics and Materials Conference, p. 1592.Google Scholar
Deck, S. 2005 Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43 (7), 15561566.CrossRefGoogle Scholar
Doerffer, P., Hirsch, C., Dussauge, J.-P., Babinsky, H. & Barakos, G.N. 2010 Unsteady Effects of Shock Wave Induced Separation, vol. 114. Springer Science & Business Media.Google Scholar
Dowell, E. 2010 Some recent advances in nonlinear aeroelasticity: fluid-structure interaction in the 21st century. In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th, p. 3137.Google Scholar
Dowell, E.H 2014 A Modern Course in Aeroelasticity, vol. 217. Springer.Google Scholar
Dowell, E.H. 2024 Coupled-mode versus single-degree-of-freedom flutter: the third parameter in flutter. AIAA J. 62 (2), 864868.CrossRefGoogle Scholar
Gao, C., Liu, X. & Zhang, W. 2021 On the dispersion mechanism of the flutter boundary of the AGARD 445.6 wing. AIAA J. 59 (7), 26572669.CrossRefGoogle Scholar
Gao, C. & Zhang, W. 2020 Transonic aeroelasticity: a new perspective from the fluid mode. Prog. Aerosp. Sci. 113, 100596.CrossRefGoogle Scholar
Gao, C., Zhang, W., Kou, J., Liu, Y. & Ye, Z. 2017 a Active control of transonic buffet flow. J. Fluid Mech. 824, 312351.CrossRefGoogle Scholar
Gao, C., Zhang, W., Li, X., Liu, Y., Quan, J., Ye, Z. & Jiang, Y. 2017 b Mechanism of frequency lock-in in transonic buffeting flow. J. Fluid Mech. 818, 528561.CrossRefGoogle Scholar
Gao, C., Zhang, W. & Ye, Z. 2016 a A new viewpoint on the mechanism of transonic single-degree-of-freedom flutter. Aerosp. Sci. Technol. 52, 144156.CrossRefGoogle Scholar
Gao, C., Zhang, W. & Ye, Z. 2016 b Numerical study on closed-loop control of transonic buffet suppression by trailing edge flap. Comput. Fluids 132, 3245.CrossRefGoogle Scholar
Gao, C., Zhang, W. & Ye, Z. 2018 Reduction of transonic buffet onset for a wing with activated elasticity. Aerosp. Sci. Technol. 77, 670676.CrossRefGoogle Scholar
Griffiths, L.M., Gaitonde, A.L., Jones, D.P. & Friswell, M.I. 2018 Updating of aerodynamic reduced order models generated using computational fluid dynamics. Proc. Inst. Mech. Engrs 232 (9), 17391763.CrossRefGoogle Scholar
Halder, R., Damodaran, M. & Khoo, B.C. 2020 a Deep learning based reduced order model for airfoil-gust and aeroelastic interaction. AIAA J. 58 (10), 43044321.CrossRefGoogle Scholar
Halder, R., Damodaran, M. & Khoo, B.C. 2020 b Signal interpolation augmented linear nonintrusive reduced-order model for aeroelastic applications. AIAA J. 58 (1), 426444.CrossRefGoogle Scholar
Hartmann, A., Klaas, M. & Schröder, W. 2013 Coupled airfoil heave/pitch oscillations at buffet flow. AIAA J. 51 (7), 15421552.CrossRefGoogle Scholar
He, S., Yang, Z. & Gu, Y. 2016 Limit cycle oscillation behavior of transonic control surface buzz considering free-play nonlinearity. J. Fluids Struct. 61, 431449.CrossRefGoogle Scholar
Heeg, J., Chwalowski, P., Raveh, D.E., Dalenbring, M.J. & Jirasek, A. 2015 Plans and example results for the 2nd AIAA aeroelastic prediction workshop. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 0437.Google Scholar
Houtman, J. & Timme, S. 2023 Global stability analysis of elastic aircraft in edge-of-the-envelope flow. J. Fluid Mech. 967, A4.CrossRefGoogle Scholar
Isogai, K. 1981 Transonic dip mechanism of flutter of a sweptback wing. AIAA J. 19, 12401242.CrossRefGoogle Scholar
Jacquin, L., Molton, P., Deck, S., Maury, B. & Soulevant, D. 2009 Experimental study of shock oscillation over a transonic supercritical profile. AIAA J. 47 (9), 19851994.CrossRefGoogle Scholar
Jameson, A. 1991 Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In 10th Computational Fluid Dynamics Conference, p. 1596.Google Scholar
Karnick, P.T. & Venkatraman, K. 2017 Shock–boundary layer interaction and energetics in transonic flutter. J. Fluid Mech. 832, 212240.CrossRefGoogle Scholar
Kholodar, D.B., Dowell, E.H., Thomas, J.P. & Hall, K.C. 2004 Improved understanding of transonic flutter: a three-parameter flutter surface. J. Aircraft 41 (4), 911917.CrossRefGoogle Scholar
Korthäuer, T., Accorinti, A., Scharnowski, S. & Kähler, C.J. 2023 Experimental investigation of transonic buffeting, frequency lock-in and their dependence on structural characteristics. J. Fluids Struct. 122, 103975.CrossRefGoogle Scholar
Kou, J., Zhang, W., Liu, Y. & Li, X. 2017 The lowest Reynolds number of vortex-induced vibrations. Phys. Fluids 29 (4), 041701.CrossRefGoogle Scholar
Landon, R.H. 1982 NACA 0012 oscillatory and transient pitching. AGARD report 702, pp. 45–59.Google Scholar
Li, X., Lyu, Z., Kou, J. & Zhang, W. 2019 Mode competition in galloping of a square cylinder at low Reynolds number. J. Fluid Mech. 867, 516555.CrossRefGoogle Scholar
Liu, Y., Zhang, W., Jiang, Y. & Ye, Z. 2016 A high-order finite volume method on unstructured grids using RBF reconstruction. Comput. Maths Applics. 72 (4), 10961117.CrossRefGoogle Scholar
Mallik, W., Schetz, J.A. & Kapania, R.K. 2018 Rapid transonic flutter analysis for aircraft conceptual design applications. AIAA J. 56 (6), 23892402.CrossRefGoogle Scholar
Moise, P., Zauner, M. & Sandham, N.D. 2024 Connecting transonic buffet with incompressible low-frequency oscillations on aerofoils. J. Fluid Mech. 981, A23.CrossRefGoogle Scholar
Moulin, J. & Marquet, O. 2021 Flow-induced instabilities of springs-mounted plates in viscous flows: a global stability approach. Phys. Fluids 33 (3), 034133.Google Scholar
Opgenoord, M.M.J., Drela, M. & Willcox, K.E. 2018 Physics-based low-order model for transonic flutter prediction. AIAA J. 56 (4), 15191531.CrossRefGoogle Scholar
Paladini, E., Beneddine, S., Dandois, J., Sipp, D. & Robinet, J.-C. 2019 a Transonic buffet instability: from two-dimensional airfoils to three-dimensional swept wings. Phys. Rev. Fluids 4 (10), 103906.CrossRefGoogle Scholar
Paladini, E., Marquet, O., Sipp, D., Robinet, J.-C. & Dandois, J. 2019 b Various approaches to determine active regions in an unstable global mode: application to transonic buffet. J. Fluid Mech. 881, 617647.CrossRefGoogle Scholar
Plante, F. Dandois, J., Beneddine, S., Laurendeau, É. & Sipp, D. 2021 Link between subsonic stall and transonic buffet on swept and unswept wings: from global stability analysis to nonlinear dynamics. J. Fluid Mech. 908, A16.CrossRefGoogle Scholar
Poplingher, L. & Raveh, D.E. 2023 a Comparative modal study of the two-dimensional and three-dimensional transonic shock buffet. AIAA J. 61 (1), 125144.CrossRefGoogle Scholar
Poplingher, L. & Raveh, D.E. 2023 b Stall flutter of the benchmark supercritical wing at high angles of attack. AIAA SciTech 2023 Forum.CrossRefGoogle Scholar
Poplingher, L., Raveh, D.E. & Dowell, E.H. 2019 Modal analysis of transonic shock buffet on 2D airfoil. AIAA J. 57 (7), 28512866.CrossRefGoogle Scholar
Raveh, D.E. & Dowell, E.H. 2011 Frequency lock-in phenomenon for oscillating airfoils in buffeting flows. J. Fluids Struct. 27 (1), 89104.CrossRefGoogle Scholar
Raveh, D.E. & Dowell, E.H. 2014 Aeroelastic responses of elastically suspended airfoil systems in transonic buffeting flows. AIAA J. 52 (5), 926934.CrossRefGoogle Scholar
Rivera, J.A. Jr., Dansberry, B.E., Bennett, R.M., Durham, M.H. & Silva, W.A. 1992 NACA 0012 benchmark model experimental flutter results with unsteadypressure distributions. In 33rd Structures, Structural Dynamics and Materials Conference, p. 2396.Google Scholar
Sartor, F., Mettot, C. & Sipp, D. 2015 Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J. 53 (7), 19801993.CrossRefGoogle Scholar
Schewe, G., Mai, H. & Dietz, G. 2003 Nonlinear effects in transonic flutter with emphasis on manifestations of limit cycle oscillations. J. Fluids Struct. 18 (1), 322.CrossRefGoogle Scholar
Schuster, D.M., Chwalowski, P., Heeg, J. & Wieseman, C.D. 2012 A summary of data and findings from the first aeroelastic prediction workshop. In International Conference on Computational Fluid Dynamics.Google Scholar
Shu, J.I., Wang, Y., Krolick, W.C. & Pant, K. 2023 Parametric aeroelastic reduced-order model with state-consistence enforcement. AIAA J. 61 (3), 11091128.CrossRefGoogle Scholar
Soda, A. & Voss, R. 2005 Analysis of transonic aerodynamic interference in the wing-nacelle region for a generic transport aircraft. In IFSAD.Google Scholar
Spalart, P. & Allmaras, S. 1992 A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit, p. 439.Google Scholar
Wang, G., Mian, H.H., Ye, Z.-Y. & Lee, J.-D. 2015 Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions. AIAA J. 53 (4), 10161025.CrossRefGoogle Scholar
Yang, Z., Huang, R., Liu, H., Zhao, Y. & Hu, H. 2020 An improved nonlinear reduced-order modeling for transonic aeroelastic systems. J. Fluids Struct. 94, 102926.CrossRefGoogle Scholar
Yao, W. & Jaiman, R.K. 2017 Model reduction and mechanism for the vortex-induced vibrations of bluff bodies. J. Fluid Mech. 827, 357393.CrossRefGoogle Scholar
Yates, E.C. Jr. 1987 AGARD standard aeroelastic configurations for dynamic response. candidate configuration I.-wing 445.6. Tech. Rep. 19880001820. Legacy CDMS.Google Scholar
Zhang, W., Gao, C., Liu, Y., Ye, Z. & Jiang, Y. 2015 a The interaction between flutter and buffet in transonic flow. Nonlinear Dyn. 82, 18511865.CrossRefGoogle Scholar
Zhang, W., Jiang, Y. & Ye, Z. 2007 Two better loosely coupled solution algorithms of cfd based aeroelastic simulation. Engng Applics. Comput. Fluid Mech. 1 (4), 253262.Google Scholar
Zhang, W., Li, X., Ye, Z. & Jiang, Y. 2015 b Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers. J. Fluid Mech. 783, 72102.CrossRefGoogle Scholar
Zhang, W., Wang, B., Ye, Z. & Quan, J. 2012 Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models. AIAA J. 50 (5), 10191028.CrossRefGoogle Scholar