Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-29T22:31:34.599Z Has data issue: false hasContentIssue false

Direct numerical simulations of the interaction of temporally evolving circular jets

Published online by Cambridge University Press:  28 April 2025

Tomoaki Watanabe*
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
Tatsuya Inagaki
Affiliation:
Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
Takahiro Mori
Affiliation:
Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
Kirari Ishizawa
Affiliation:
Undergraduate Department of Mechanical and Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
Koji Nagata
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
*
Corresponding author: Tomoaki Watanabe, [email protected]

Abstract

Direct numerical simulations are performed to study turbulence generated by the interaction of multiple temporally evolving circular jets with jet Mach numbers $M_J=0.6$ and $1.6$, and a jet Reynolds number of 3000. The jet interaction produces decaying, nearly homogeneous isotropic turbulence, where the root-mean-squared (r.m.s.) fluctuation ratio between the streamwise and transverse velocities is approximately 1.1, consistent with values observed in grid turbulence. In the supersonic case, shock waves are generated and propagate for a long time, even after the turbulent Mach number decreases. A comparison between the two Mach number cases reveals compressibility effects, such as reductions in the velocity derivative skewness magnitude and the non-dimensional energy dissipation rate. For the r.m.s. velocity fluctuations, $u_{rms}$, and the integral scale of the streamwise velocity, $L_u$, the Batchelor turbulence invariant, $u_{rms}^2 L_u^5$, becomes nearly constant after the turbulence has decayed for a certain time. In contrast, the Saffman turbulence invariant, $u_{rms}^2 L_u^3$, continuously decreases. Furthermore, temporal variations of $u_{rms}^2$ and $L_u$ follow power laws, with exponents closely matching the theoretical values for Batchelor turbulence. The three-dimensional energy spectrum $E(k)$, where $k$ is the wavenumber, exhibits $E(k) \sim k^4$ for small wavenumbers. This behaviour is consistently observed for both Mach number cases, indicating that the modulation of small-scale turbulence by compressibility effects does not affect the decay characteristics of large scales. These results demonstrate that jet interaction generates Batchelor turbulence, providing a new direction for experimental investigations into Batchelor turbulence using jet arrays.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anas, M., Joshi, P. & Verma, M.K. 2020 Freely decaying turbulence in a finite domain at finite Reynolds number. Phys. Fluids 32 (9), 095109.CrossRefGoogle Scholar
Anderson, E.A. & Spall, R.E. 2001 Experimental and numerical investigation of two-dimensional parallel jets. J. Fluids Engng 123 (2), 401406.CrossRefGoogle Scholar
Antonia, R.A. & Chambers, A.J. 1980 On the correlation between turbulent velocity and temperature derivatives in the atmospheric surface layer. Boundary-Layer Meteorol. 18 (4), 399410.CrossRefGoogle Scholar
Batchelor, G.K. & Proudman, I. 1956 The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. Lond. A 248, 369405.Google Scholar
Batchelor, G.K. & Townsend, A.A. 1948 Decay of turbulence in the final period. Proc. R. Soc. Lond. A 194, 527543.Google Scholar
Bellani, G. & Variano, E.A. 2014 Homogeneity and isotropy in a laboratory turbulent flow. Exp. Fluids 55 (1), 112.CrossRefGoogle Scholar
Blakeley, B.C., Olson, B.J. & Riley, J.J. 2022 Self-similarity of scalar isosurface area density in a temporal mixing layer. J. Fluid Mech. 951, A44.CrossRefGoogle Scholar
Bogdanoff, D.W. 1983 Compressibility effects in turbulent shear layers. AIAA J. 21 (6), 926927.CrossRefGoogle Scholar
Bornoff, R.B. & Mokhtarzadeh-Dehghan, M.R. 2001 A numerical study of interacting buoyant cooling-tower plumes. Atmos. Environ. 35 (3), 589598.CrossRefGoogle Scholar
Boussoufi, M., Sabeur-Bendehina, A., Ouadha, A., Morsli, S. & El Ganaoui, M. 2017 Numerical analysis of single and multiple jets. Eur. Phys. J.: Appl. Phys. 78 (3), 34814.Google Scholar
Burr, J.R. & Yu, K.H. 2019 Experimental characterization of RDE combustor flowfield using linear channel. Proc. Combust. Inst. 37 (3), 34713478.CrossRefGoogle Scholar
Caliskan, S., Baskaya, S. & Calisir, T. 2014 Experimental and numerical investigation of geometry effects on multiple impinging air jets. Intl J. Heat Mass Transfer 75, 685703.CrossRefGoogle Scholar
Carter, D., Petersen, A., Amili, O. & Coletti, F. 2016 Generating and controlling homogeneous air turbulence using random jet arrays. Exp. Fluids 57 (12), 115.CrossRefGoogle Scholar
Coltrin, I.S., Blotter, J.D., Maynes, R.D. & Gee, K.L. 2013 Shock-cell structures and corresponding sound pressure levels emitted from closely spaced supersonic jet arrays. Appl. Acoust. 74 (12), 15191526.CrossRefGoogle Scholar
Coltrin, I.S., Maynes, R.D., Blotter, J.D. & Gee, K.L. 2014 Influence of nozzle spacing and diameter on acoustic radiation from supersonic jets in closely spaced arrays. Appl. Acoust. 81, 1925.CrossRefGoogle Scholar
Davidson, P.A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Davidson, P.A., Okamoto, N. & Kaneda, Y. 2012 On freely decaying, anisotropic, axisymmetric Saffman turbulence. J. Fluid Mech. 706, 150172.CrossRefGoogle Scholar
Diamessis, P.J., Spedding, G.R. & Domaradzki, J.A. 2011 Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 671, 5295.CrossRefGoogle Scholar
Donzis, D.A. & Jagannathan, S. 2013 Fluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech. 733, 221244.CrossRefGoogle Scholar
Donzis, D.A. & John, J.P. 2020 Universality and scaling in homogeneous compressible turbulence. Phys. Rev. Fluids 5 (8), 084609.CrossRefGoogle Scholar
Freund, J.B., Lele, S.K. & Moin, P. 2000 Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229267.CrossRefGoogle Scholar
Gampert, M., Boschung, J., Hennig, F., Gauding, M. & Peters, N. 2014 The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J. Fluid Mech. 750, 578596.CrossRefGoogle Scholar
Geers, L.F.G., Hanjalić, K. & Tummers, M.J. 2006 Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J. Fluid Mech. 546, 255284.CrossRefGoogle Scholar
Geers, L.F.G., Tummers, M.J. & Hanjalić, K. 2005 Particle imaging velocimetry-based identification of coherent structures in normally impinging multiple jets. Phys. Fluids 17 (5), 055105.CrossRefGoogle Scholar
Ghahremanian, S., Svensson, K., Tummers, M.J. & Moshfegh, B. 2014 Near-field mixing of jets issuing from an array of round nozzles. Intl J. Heat Fluid Flow 47, 84100.CrossRefGoogle Scholar
Gottlieb, S. & Shu, C.-W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67 (221), 7385.CrossRefGoogle Scholar
Gad-el Hak, M. & Corrsin, S. 1974 Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62 (1), 115143.CrossRefGoogle Scholar
Hao, K., Tian, A. & Zhou, Y. 2021 Characteristics of small-scale motions in a dual-plane jet flow. Intl J. Heat Fluid Flow 91, 108851.CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 a Characteristics of small-scale shear layers in a temporally evolving turbulent planar jet. J. Fluid Mech. 920, A38.CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 b The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet. Phys. Fluids 33 (5), 055126.CrossRefGoogle Scholar
Hwang, W. & Eaton, J.K. 2004 Creating homogeneous and isotropic turbulence without a mean flow. Exp. Fluids 36 (3), 444454.CrossRefGoogle Scholar
Isaza, J.C., Salazar, R. & Warhaft, Z. 2014 On grid-generated turbulence in the near-and far field regions. J. Fluid Mech. 753, 402426.CrossRefGoogle Scholar
Ishida, T., Davidson, P.A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.CrossRefGoogle Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
Kerr, R.M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.CrossRefGoogle Scholar
Kitamura, T., Nagata, K., Sakai, Y., Sasoh, A. & Ito, Y. 2017 Changes in divergence-free grid turbulence interacting with a weak spherical shock wave. Phys. Fluids 29 (6), 065114.CrossRefGoogle Scholar
Kitamura, T., Nagata, K., Sakai, Y., Sasoh, A., Terashima, O., Saito, H. & Harasaki, T. 2014 On invariants in grid turbulence at moderate Reynolds numbers. J. Fluid Mech. 738, 378406.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 On decay of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk SSSR 31, 538540.Google Scholar
Kozul, M., Chung, D. & Monty, J.P. 2016 Direct numerical simulation of the incompressible temporally developing turbulent boundary layer. J. Fluid Mech 796, 437472.CrossRefGoogle Scholar
Krogstad, P.-Å. & Davidson, P.A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.CrossRefGoogle Scholar
Krogstad, P.-Å. & Davidson, P.A. 2011 Freely decaying, homogeneous turbulence generated by multi-scale grids. J. Fluid Mech. 680, 417434.CrossRefGoogle Scholar
Kuo, A.Y.-S. & Corrsin, S. 1971 Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid. J. Fluid Mech. 50 (2), 285319.CrossRefGoogle Scholar
Li, X.-L., Fu, D.-X., Ma, Y.-W. & Liang, X. 2010 Direct numerical simulation of compressible turbulent flows. Acta Mechanica Sin. 26 (6), 795806.CrossRefGoogle Scholar
Lin, Y.F. & Sheu, M.J. 1990 Investigation of two plane paralleltiinven ilated jets. Exp. Fluids 10 (1), 1722.CrossRefGoogle Scholar
Liu, P., Duan, H. & Zhao, W. 2009 Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant. Appl. Therm. Engng 29 (10), 19271934.CrossRefGoogle Scholar
Manohar, C.H.I., Sundararajan, T., Ramjee, V. & Kumar, S.S. 2004 A numerical and experimental investigation of the interactions between a non-uniform planar array of incompressible free jets. Intl J. Numer. Meth. Fluids 44 (4), 431446.CrossRefGoogle Scholar
Medaouar, W., Loukarfi, L., Braikia, M., Khelil, A. & Naji, H. 2019 Experimental and numerical study of a turbulent multiple jets issued from lobed diffusers. J. Appl. Fluid Mech. 12 (3), 729742.Google Scholar
Meldi, M. & Sagaut, P. 2013 Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence. J. Turbul. 14 (8), 2453.CrossRefGoogle Scholar
Meslem, A., Nastase, I. & Allard, F. 2010 Passive mixing control for innovative air diffusion terminal devices for buildings. Build. Environ. 45 (12), 26792688.CrossRefGoogle Scholar
Mi, J., Xu, M. & Zhou, T. 2013 Reynolds number influence on statistical behaviors of turbulence in a circular free jet. Phys. Fluids 25 (7), 075101.CrossRefGoogle Scholar
Miller, D.R. & Comings, E.W. 1960 Force-momentum fields in a dual-jet flow. J. Fluid Mech. 7 (2), 237256.CrossRefGoogle Scholar
Mora, D.O., Muñiz Pladellorens, E., Riera Turró, P., Lagauzere, M. & Obligado, M. 2019 Energy cascades in active-grid-generated turbulent flows. Phys. Rev. Fluids 4 (10), 104601.CrossRefGoogle Scholar
Mori, T., Watanabe, T. & Nagata, K. 2024 Nearly homogeneous and isotropic turbulence generated by the interaction of supersonic jets. Exp. Fluids 65 (4), 47.CrossRefGoogle Scholar
Morize, C. & Moisy, F. 2006 Energy decay of rotating turbulence with confinement effects. Phys. Fluids 18 (6), 065107.CrossRefGoogle Scholar
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320 (1), 331368.CrossRefGoogle Scholar
Nagata, R., Watanabe, T. & Nagata, K. 2018 Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets. Phys. Fluids 30 (10), 105109.CrossRefGoogle Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.CrossRefGoogle Scholar
Pérez-Alvarado, A., Mydlarski, L. & Gaskin, S. 2016 Effect of the driving algorithm on the turbulence generated by a random jet array. Exp. Fluids 57, 115.CrossRefGoogle Scholar
Pineau, P. & Bogey, C. 2020 Temperature effects on convection speed and steepened waves of temporally developing supersonic jets. AIAA J. 58 (3), 12271239.CrossRefGoogle Scholar
Praud, O., Fincham, A.M. & Sommeria, J. 2005 Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech. 522, 133.CrossRefGoogle Scholar
Raman, G. & Taghavi, R. 1996 Resonant interaction of a linear array of supersonic rectangular jets: an experimental study. J. Fluid Mech. 309, 93111.CrossRefGoogle Scholar
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.CrossRefGoogle Scholar
Sadeghi, H., Oberlack, M. & Gauding, M. 2018 On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation. J Fluid Mech. 854, 233260.CrossRefGoogle Scholar
Saffman, P.G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27 (3), 581593.CrossRefGoogle Scholar
Samtaney, R., Pullin, D.I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13 (5), 14151430.CrossRefGoogle Scholar
San, O. & Kara, K. 2015 Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin–Helmholtz instability. Comput. Fluids 117, 2441.CrossRefGoogle Scholar
da Silva, C.B. & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.CrossRefGoogle Scholar
Sinhuber, M., Bodenschatz, E. & Bewley, G.P. 2015 Decay of turbulence at high Reynolds numbers. Phys. Rev. Lett. 114 (3), 034501.CrossRefGoogle ScholarPubMed
Skrbek, L. & Stalp, S.R. 2000 On the decay of homogeneous isotropic turbulence. Phys. Fluids 12 (8), 19972019.CrossRefGoogle Scholar
Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.CrossRefGoogle Scholar
Svensson, K., Rohdin, P. & Moshfegh, B. 2016 On the influence of array size and jet spacing on jet interactions and confluence in round jet arrays. J. Fluids Engng 138 (8), 081206.CrossRefGoogle Scholar
Takahashi, M., Fukui, R., Tsujimoto, K., Ando, T. & Shakouchi, T. 2023 Helical structures in a temporally developing round jet in the developed state. Flow, Turbul. Combust. 111 (1), 5979.CrossRefGoogle Scholar
Tan, S., Xu, X., Qi, Y. & Ni, R. 2023 Scalings and decay of homogeneous, nearly isotropic turbulence behind a jet array. Phys. Rev. Fluids 8 (2), 024603.CrossRefGoogle Scholar
Tanaka, K., Watanabe, T., Nagata, K., Sasoh, A., Sakai, Y. & Hayase, T. 2018 Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence. Phys. Fluids 30 (3), 035105.CrossRefGoogle Scholar
Tatsumi, K., Tanaka, M., Woodfield, P.L. & Nakabe, K. 2010 Swirl and buoyancy effects on mixing performance of baffle-plate-type miniature confined multijet. Intl J. Heat Fluid Flow 31 (1), 4556.CrossRefGoogle Scholar
Teunissen, H.W. 1975 Simulation of the planetary boundary layer in a multiple-jet wind tunnel. Atmos. Environ. 9 (2), 145174.CrossRefGoogle Scholar
Thielen, L., Jonker, H.J.J. & Hanjalić, K. 2003 Symmetry breaking of flow and heat transfer in multiple impinging jets. Intl J. Heat Fluid Flow 24 (4), 444453.CrossRefGoogle Scholar
Valente, P.C., da Silva, C.B. & Pinho, F.T. 2016 Energy spectra in elasto-inertial turbulence. Phys. Fluids 28 (7), 075108.CrossRefGoogle Scholar
Valente, P.C. & Vassilicos, J.C. 2014 The non-equilibrium region of grid-generated decaying turbulence. J. Fluid Mech. 744, 537.CrossRefGoogle Scholar
Van Atta, C.W. & Antonia, R.A. 1980 Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23 (2), 252257.CrossRefGoogle Scholar
Variano, E.A., Bodenschatz, E. & Cowen, E.A. 2004 A random synthetic jet array driven turbulence tank. Exp. Fluids 37 (4), 613615.CrossRefGoogle Scholar
Wang, J., Gotoh, T. & Watanabe, T. 2017 Shocklet statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2 (2), 023401.CrossRefGoogle Scholar
Watanabe, T., Mori, T., Ishizawa, K. & Nagata, K. 2024 Scale dependence of local shearing motion in decaying turbulence generated by multiple-jet interaction. J. Fluid Mech. 997, A14.CrossRefGoogle Scholar
Watanabe, T. & Nagata, K. 2018 Integral invariants and decay of temporally developing grid turbulence. Phys. Fluids 30 (10), 105111.CrossRefGoogle Scholar
Watanabe, T., Riley, J.J., de Bruyn Kops, S.M., Diamessis, P.J. & Zhou, Q. 2016 a Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech. 797, R1.CrossRefGoogle Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2014 Enstrophy and passive scalar transport near the turbulent/non-turbulent interface in a turbulent planar jet flow. Phys. Fluids 26 (10), 105103.CrossRefGoogle Scholar
Watanabe, T., da Silva, C.B., Sakai, Y., Nagata, K. & Hayase, T. 2016 b Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers. Phys. Fluids 28 (3), 031701.CrossRefGoogle Scholar
Watanabe, T., Tanaka, K. & Nagata, K. 2021 Solenoidal linear forcing for compressible, statistically steady, homogeneous isotropic turbulence with reduced turbulent mach number oscillation. Phys. Fluids 33 (9), 095108.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2019 Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation. Comput. Fluids 194, 104314.CrossRefGoogle Scholar
Watanabe, T., Zheng, Y. & Nagata, K. 2022 The decay of stably stratified grid turbulence in a viscosity-affected stratified flow regime. J. Fluid Mech. 946, A29.CrossRefGoogle Scholar
Xinliang, L., Dexun, F. & Yanwen, M. 2002 Direct numerical simulation of compressible isotropic turbulence. Sci. China A 45 (11), 14521460.CrossRefGoogle Scholar
Yamamoto, K., Ishida, T., Watanabe, T. & Nagata, K. 2022 a Experimental and numerical investigation of compressibility effects on velocity derivative flatness in turbulence. Phys. Fluids 34 (5), 055101.CrossRefGoogle Scholar
Yamamoto, K., Watanabe, T. & Nagata, K. 2022 b Turbulence generated by an array of opposed piston-driven synthetic jet actuators. Exp. Fluids 63 (1), 35.CrossRefGoogle Scholar
Yang, H., Wu, Y., Zeng, X., Wang, X. & Zhao, D. 2021 Partially-premixed combustion characteristics and thermal performance of micro jet array burners with different nozzle spacings. J. Therm. Sci. 30 (5), 17181730.CrossRefGoogle Scholar
Yimer, J., Becker, H.A. & Grandmaison, E.W. 1996 Development of flow from multiple-jet burners. Can. J. Chem. Engng 74 (6), 840851.CrossRefGoogle Scholar
Zecchetto, M. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2018 Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers. Phys. Rev. Fluids 3 (9), 094605.CrossRefGoogle Scholar
Zheng, Y., Nagata, K. & Watanabe, T. 2021 Energy dissipation and enstrophy production/destruction at very low Reynolds numbers in the final stage of the transition period of decay in grid turbulence. Phys. Fluids 33 (3), 035147.CrossRefGoogle Scholar