Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-05-01T00:58:06.696Z Has data issue: false hasContentIssue false

Analysis and lattice Boltzmann simulation of thermoacoustic instability in a Rijke tube

Published online by Cambridge University Press:  05 December 2024

Xuan Chen
Affiliation:
School of Astronautics, Harbin Institute of Technology, Harbin, 150006 Heilongjiang, PR China Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, PR China
Kun Yang*
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, PR China
Dong Yang
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, PR China
Xiaowen Shan*
Affiliation:
BNU-HKBU United International College, Zhuhai, 519087 Guangdong, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The combined effects of heater position, mean flow parameters and flame models on thermoacoustic instability in a one-dimensional Rijke tube are studied systematically by classic linear stability analysis (LSA) and lattice Boltzmann method (LBM) simulation. In the former, the stability range of the linear flame model under low Mach number assumption is solved analytically, while in the more general case, it is obtained by numerically solving the dispersion relation. Both the linear and nonlinear flame model cases are studied using the LBM with a spectral multiple-relaxation-time collision model and a newly developed heat source term. With the linear flame model, the LBM is in good agreement with LSA in predicting the transition point and growth rates, while with the nonlinear flame model, LBM simulations are consistent with solutions of limit cycle theory in the fully developed state. These results demonstrate the applicability of the LBM in solving complex thermoacoustic problems.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexander, F.J., Chen, H., Chen, S. & Doolen, G.D. 1992 Lattice Boltzmann model for compressible fluids. Phys. Rev. A 46 (4), 19671970.CrossRefGoogle ScholarPubMed
Atif, M., Namburi, M. & Ansumali, S. 2018 Higher-order lattice Boltzmann model for thermohydrodynamics. Phys. Rev. E 98, 053311.CrossRefGoogle Scholar
Barad, M.F., Kocheemoolayil, J.G. & Kiris, C.C. 2017 Lattice Boltzmann and Navier–Stokes Cartesian CFD approaches for airframe noise predictions. In 23rd AIAA Comp. Fluid Dyn. Conf. AIAA.CrossRefGoogle Scholar
Bellucci, V., Schuermans, B., Nowak, D., Flohr, P. & Paschereit, C.O. 2005 Thermoacoustic modeling of a gas turbine combustor equipped with acoustic dampers. Trans. ASME J. Turbomach. 127 (2), 372379.CrossRefGoogle Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222 (3), 145197.CrossRefGoogle Scholar
Bloxsidge, G.J., Dowling, A.P. & Langhorne, P.J. 1988 Reheat buzz: an acoustically coupled combustion instability. Part 2. Theory. J. Fluid Mech. 193, 445473.CrossRefGoogle Scholar
Boudy, F., Durox, D., Schuller, T. & Candel, S. 2011 Nonlinear mode triggering in a multiple flame combustor. Proc. Combust. Inst. 33 (1), 11211128.CrossRefGoogle Scholar
Boudy, F., Durox, D., Schuller, T. & Candel, S. 2013 Analysis of limit cycles sustained by two modes in the flame describing function framework. C. R. Méc. 341 (1–2), 181190.CrossRefGoogle Scholar
Buick, J.M., Greated, C.A. & Campbell, D.M. 1998 Lattice BGK simulation of sound waves. Europhys. Lett. 43 (3), 235240.CrossRefGoogle Scholar
Cannon, S.M., Adumitroaie, V. & Smith, C.E. 2001 3D LES modeling of combustion dynamics in lean premixed combustors. In Turbo Expo: Power for Land, Sea, and Air, vol. 78514, V002T02A056. ASME.CrossRefGoogle Scholar
Chen, H., Chen, S. & Matthaeus, W.H. 1992 Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45 (8), R5339R5342.CrossRefGoogle ScholarPubMed
Chen, S. & Doolen, G.D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
Chen, X., Yang, K. & Shan, X. 2023 Characteristic boundary condition for multispeed lattice Boltzmann model in acoustic problems. J. Comput. Phys. 490, 112302.CrossRefGoogle Scholar
Chen, Y., Ohashi, H. & Akiyama, M. 1994 Thermal lattice Bhatnagar–Gross–Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E 50 (4), 27762783.CrossRefGoogle ScholarPubMed
Crocco, L. 1951 Aspects of combustion stability in liquid propellant rocket motors. Part I. Fundamentals, low frequency instability with monopropellants. J. Am. Rocket Soc. 21 (6), 163178.CrossRefGoogle Scholar
Delgado-Gutierrez, A., Marzocca, P., Cardenas, D. & Probst, O. 2020 A highly accurate GPU lattice Boltzmann method with directional interpolation for the probability distribution functions. Intl J. Numer. Meth. Fluids 92 (12), 17781797.CrossRefGoogle Scholar
Dowling, A.P. 1995 The calculation of thermoacoustic oscillations. J. Sound Vib. 180 (4), 557581.CrossRefGoogle Scholar
Dowling, A.P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.CrossRefGoogle Scholar
Dowling, A.P. 1999 A kinematic model of a ducted flame. J. Fluid Mech. 394, 5172.CrossRefGoogle Scholar
Dowling, A.P. & Stow, S.R. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19 (5), 751764.CrossRefGoogle Scholar
Fleifil, M., Annaswamy, A.M., Ghoneim, Z.A. & Ghoniem, A.F. 1996 Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106 (4), 487510.CrossRefGoogle Scholar
Hantschk, C.-C. & Vortmeyer, D. 1999 Numerical simulation of self-excited thermoacoustic instabilities in a Rijke tube. J. Sound Vib. 227 (3), 511522.CrossRefGoogle Scholar
Huang, K. 1987 Statistical Mechanics. John Wiley & Sons.Google Scholar
Hubbard, S. & Dowling, A.P. 2001 Acoustic resonances of an industrial gas turbine combustion system. Trans. ASME J. Engng Gas Turbines Power 123 (4), 766773.CrossRefGoogle Scholar
Kolluru, P.K., Atif, M. & Ansumali, S. 2023 Reduced kinetic model of polyatomic gases. J. Fluid Mech. 963, A7.CrossRefGoogle Scholar
Kuznik, F., Obrecht, C., Rusaouen, G. & Roux, J.-J. 2010 LBM based flow simulation using GPU computing processor. Comput. Math. Appl. 59 (7), 23802392.CrossRefGoogle Scholar
Li, X. & Shan, X. 2021 Rotational symmetry of the multiple-relaxation-time collision model. Phys. Rev. E 103 (4), 043309.CrossRefGoogle ScholarPubMed
Mariappan, S. & Sujith, R.I. 2011 Modelling nonlinear thermoacoustic instability in an electrically heated Rijke tube. J. Fluid Mech. 680, 511533.CrossRefGoogle Scholar
Marié, S., Ricot, D. & Sagaut, P. 2009 Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics. J. Comput. Phys. 228 (4), 10561070.CrossRefGoogle Scholar
Matveev, K.I. 2003 Thermoacoustic Instabilities in the Rijke Tube: Experiments and Modeling. California Institute of Technology.Google Scholar
McNamara, G.R., Garcia, A.L. & Alder, B.J. 1995 Stabilization of thermal lattice Boltzmann models. J. Stat. Phys. 81, 395408.CrossRefGoogle Scholar
Namburi, M., Krithivasan, S. & Ansumali, S. 2016 Crystallographic lattice Boltzmann method. Sci. Rep. 6, 27172.CrossRefGoogle ScholarPubMed
Nie, X., Shan, X. & Chen, H. 2008 a Galilean invariance of lattice Boltzmann models. Europhys. Lett. 81, 34005.CrossRefGoogle Scholar
Nie, X., Shan, X. & Chen, H. 2008 b Thermal lattice Boltzmann model for gases with internal degrees of freedom. Phys. Rev. E 77, 035701.CrossRefGoogle ScholarPubMed
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2011 Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame 158 (10), 19801991.CrossRefGoogle Scholar
Pankiewitz, C. & Sattelmayer, T. 2003 Time domain simulation of combustion instabilities in annular combustors. Trans. ASME J. Engng Gas Turbines Power 125 (3), 677685.CrossRefGoogle Scholar
Poinsot, T. 2017 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36 (1), 128.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. R.T. Edwards.Google Scholar
Poinsot, T.J. & Lele, S.K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.CrossRefGoogle Scholar
Qian, Y.-H., d'Humières, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17 (6), 479484.CrossRefGoogle Scholar
Rinaldi, P.R., Dari, E.A., Vénere, M.J. & Clausse, A. 2012 A lattice-Boltzmann solver for 3D fluid simulation on GPU. Simul. Model Pract. Thoery 25, 163171.CrossRefGoogle Scholar
Schuller, T., Poinsot, T. & Candel, S. 2020 Dynamics and control of premixed combustion systems based on flame transfer and describing functions. J. Fluid Mech. 894, P1.CrossRefGoogle Scholar
Shan, X. 2016 The mathematical structure of the lattices of the lattice Boltzmann method. J. Comput. Sci. 17, 475481.CrossRefGoogle Scholar
Shan, X. 2019 Central-moment-based Galilean-invariant multiple-relaxation-time collision model. Phys. Rev. E 100 (4), 043308.CrossRefGoogle ScholarPubMed
Shan, X. & He, X. 1998 Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80 (1), 6568.CrossRefGoogle Scholar
Shan, X., Li, X. & Shi, Y. 2021 A multiple-relaxation-time collision model by Hermite expansion. Phil. Trans. R. Soc. A 379 (2208), 20200406.CrossRefGoogle ScholarPubMed
Shan, X., Yuan, X.-F. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413.CrossRefGoogle Scholar
Slimene, S., Yahya, A., Dhahri, H. & Naji, H. 2022 Simulating Rayleigh streaming and heat transfer in a standing-wave thermoacoustic engine via a thermal lattice Boltzmann method. Intl J. Thermophys. 43 (7), 100.CrossRefGoogle Scholar
Stow, S.R. & Dowling, A.P. 2004 Low-order modelling of thermoacoustic limit cycles. In Turbo Expo: Power for Land, Sea, and Air, vol. 41669, pp. 775–786. ASME.CrossRefGoogle Scholar
Stow, S.R. & Dowling, A.P. 2009 A time-domain network model for nonlinear thermoacoustic oscillations. Trans. ASME J. Engng Gas Turbines Power 131 (3), 031502.CrossRefGoogle Scholar
Toffolo, A., Masi, M. & Lazzaretto, A. 2010 Low computational cost CFD analysis of thermoacoustic oscillations. Appl. Therm. Engng 30 (6–7), 544552.CrossRefGoogle Scholar
Urednicek, Z. 2018 Describing functions and prediction of limit cycles. WSEAS Trans. Sys. Cont. 13, 432446.Google Scholar
Wang, X., Shangguan, Y., Onodera, N., Kobayashi, H. & Aoki, T. 2014 Direct numerical simulation and large eddy simulation on a turbulent wall-bounded flow using lattice Boltzmann method and multiple GPUs. Math. Probl. Engng 2014 (1), 742432.Google Scholar
Wang, Y., Sun, D.-K., He, Y.-L. & Tao, W.-Q. 2015 Lattice Boltzmann study on thermoacoustic onset in a Rijke tube. Eur. Phys. J. Plus 130, 110.CrossRefGoogle Scholar
Xi, Y., Li, X., Wang, Y., Xu, B., Wang, N. & Zhao, D. 2022 Experimental study of transition to instability in a Rijke tube with axially distributed heat source. Intl J. Heat Mass Transfer 183, 122157.CrossRefGoogle Scholar