Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-30T01:38:32.969Z Has data issue: false hasContentIssue false

Tunable drag drop via flow-induced snap-through in origami

Published online by Cambridge University Press:  25 November 2024

Rishabh Nain
Affiliation:
Laboratoire d'Hydrodynamique (LadHyX), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
Tom Marzin
Affiliation:
Laboratoire d'Hydrodynamique (LadHyX), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France Department of Chemical and Biological Engineering, Princeton University, NJ 08544, USA
Sophie Ramananarivo*
Affiliation:
Laboratoire d'Hydrodynamique (LadHyX), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

We leverage the snap-through response of a bistable origami mechanism to induce a discontinuous evolution of drag with flow speed. The transition between equilibrium states is actuated passively by airflow, and we demonstrate that large shape reconfiguration over a small increment of flow velocity leads to a pronounced and sudden drop in drag. Moreover, we show that systematically varying the geometrical and mechanical properties of the origami unit enables the tuning of this drag discontinuity and the critical speed and loading at which it occurs. Experimental results are supported by a theoretical aeroelastic model, which further guides inverse design to identify the combination of structural origami parameters for targeted drag collapse. This approach sheds light on harnessing origami-inspired mechanisms for efficient passive drag control in a fluid environment, applicable for load alleviation or situations requiring swift transitions in aerodynamic performances.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Achenbach, E. 1972 Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54 (3), 565575.CrossRefGoogle Scholar
Alben, S., Shelley, M. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420 (6915), 479481.CrossRefGoogle ScholarPubMed
Alben, S., Shelley, M. & Zhang, J. 2004 How flexibility induces streamlining in a two-dimensional flow. Phys. Fluids 16 (5), 16941713.CrossRefGoogle Scholar
Arena, G., Groh, R.M.J., Brinkmeyer, A., Theunissen, R., Weaver, P.M. & Pirrera, A. 2017 Adaptive compliant structures for flow regulation. Proc. R. Soc. A 473 (2204), 20170334.CrossRefGoogle ScholarPubMed
Arena, G., Groh, R.M.J., Theunissen, R., Weaver, P.M. & Pirrera, A. 2018 Design and testing of a passively adaptive inlet. Smart Mater. Struct. 27 (8), 085019.CrossRefGoogle Scholar
Arrieta, A.F., Bilgen, O., Friswell, M.I. & Hagedorn, P. 2012 Passive load alleviation bi-stable morphing concept. AIP Adv. 2 (3), 032118.CrossRefGoogle Scholar
Brunck, V., Lechenault, F., Reid, A. & Adda-Bedia, M. 2016 Elastic theory of origami-based metamaterials. Phys. Rev. E 93 (3), 033005.CrossRefGoogle ScholarPubMed
Cavens, W.D.K., Chopra, A. & Arrieta, A.F. 2021 Passive load alleviation on wind turbine blades from aeroelastically driven selectively compliant morphing. Wind Energy 24 (1), 2438.CrossRefGoogle Scholar
Cozmei, M., Hasseler, T., Kinyon, E., Wallace, R., Deleo, A.A. & Salviato, M. 2020 Aerogami: composite origami structures as active aerodynamic control. Compos. B 184, 107719.CrossRefGoogle Scholar
Ganedi, L., Oza, A.U., Shelley, M. & Ristroph, L. 2018 Equilibrium shapes and their stability for liquid films in fast flows. Phys. Rev. Lett. 121 (9), 094501.CrossRefGoogle ScholarPubMed
Gomez, M., Moulton, D.E. & Vella, D. 2017 Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119 (14), 144502.CrossRefGoogle ScholarPubMed
Gosselin, F., de Langre, E. & Machado-Almeida, B.A. 2010 Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319.CrossRefGoogle Scholar
Han, J.S., Ko, J.S. & Korvink, J.G. 2004 Structural optimization of a large-displacement electromagnetic lorentz force microactuator for optical switching applications. J. Micromech. Microengng 14 (11), 1585.CrossRefGoogle Scholar
Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P. & Howell, L.L. 2014 Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23 (9), 094009.CrossRefGoogle Scholar
Hanna, B.H., Magleby, S.P., Lang, R.J. & Howell, L.L. 2015 Force–deflection modeling for generalized origami waterbomb-base mechanisms. J. Appl. Mech. 82 (8), 081001.CrossRefGoogle Scholar
Holler, R. 1985 Hydrodynamic drag of drogues and sea anchors for drift control of freefloating buoys. In OCEANS’85-Ocean Engineering and the Environment, pp. 1330–1335. IEEE.CrossRefGoogle Scholar
Jianguo, C., Xiaowei, D., Ya, Z., Jian, F. & Yongming, T. 2015 Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137 (6), 061406.CrossRefGoogle Scholar
Jules, T., Reid, A., Daniels, K.E., Mungan, M. & Lechenault, F. 2022 Delicate memory structure of origami switches. Phys. Rev. Res. 4 (1), 013128.CrossRefGoogle Scholar
Kim, H., Lahooti, M., Kim, J. & Kim, D. 2021 Flow-induced periodic snap-through dynamics. J. Fluid Mech. 913, A52.CrossRefGoogle Scholar
Kim, H., Zhou, Q., Kim, D. & Oh, I.-K. 2020 Flow-induced snap-through triboelectric nanogenerator. Nano Energy 68, 104379.CrossRefGoogle Scholar
de Langre, E., Gutierrez, A. & Cossé, J. 2012 On the scaling of drag reduction by reconfiguration in plants. C. R. Méc. 340 (1–2), 3540.CrossRefGoogle Scholar
Lechenault, F., Thiria, B. & Adda-Bedia, M. 2014 Mechanical response of a creased sheet. Phys. Rev. Lett. 112 (24), 244301.CrossRefGoogle ScholarPubMed
Li, S., Fang, H., Sadeghi, S., Bhovad, P. & Wang, K.-W. 2019 Architected origami materials: how folding creates sophisticated mechanical properties. Adv. Mater. 31 (5), 1805282.CrossRefGoogle ScholarPubMed
Li, S. & Wang, K.W. 2015 Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation. J. R. Soc. Interface 12 (111), 20150639.CrossRefGoogle ScholarPubMed
Liu, C. & Felton, S.M. 2018 Transformation dynamics in origami. Phys. Rev. Lett. 121 (25), 254101.CrossRefGoogle ScholarPubMed
Lopez, D., Eloy, C., Michelin, S. & De Langre, E. 2014 Drag reduction, from bending to pruning. Europhys. Lett. 108 (4), 48002.CrossRefGoogle Scholar
Marzin, T., de Langre, E. & Ramananarivo, S. 2022 Shape reconfiguration through origami folding sets an upper limit on drag. Proc. R. Soc. A 478 (2267), 20220592.CrossRefGoogle Scholar
Overvelde, J.T.B., De Jong, T.A., Shevchenko, Y., Becerra, S.A., Whitesides, G.M., Weaver, J.C., Hoberman, C. & Bertoldi, K. 2016 A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat. Commun. 7 (1), 18.CrossRefGoogle ScholarPubMed
Overvelde, J.T.B., Kloek, T., D'haen, J.J.A. & Bertoldi, K. 2015 Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl Acad. Sci. USA 112 (35), 1086310868.CrossRefGoogle ScholarPubMed
Peretz, O., Mishra, A.K., Shepherd, R.F. & Gat, A.D. 2020 Underactuated fluidic control of a continuous multistable membrane. Proc. Natl Acad. Sci. USA 117 (10), 52175221.CrossRefGoogle ScholarPubMed
Schouveiler, L. & Boudaoud, A. 2006 The rolling up of sheets in a steady flow. J. Fluid Mech. 563, 71.CrossRefGoogle Scholar
Schouveiler, L. & Eloy, C. 2013 Flow-induced draping. Phys. Rev. Lett. 111 (6), 064301.CrossRefGoogle ScholarPubMed
Sengupta, S. & Li, S. 2018 Harnessing the anisotropic multistability of stacked-origami mechanical metamaterials for effective modulus programming. J. Intell. Mater. Syst. Struct. 29 (14), 29332945.CrossRefGoogle Scholar
Shan, S., Kang, S.H., Raney, J.R., Wang, P., Fang, L., Candido, F., Lewis, J.A. & Bertoldi, K. 2015 Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27 (29), 42964301.CrossRefGoogle ScholarPubMed
Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D. & Cohen, I. 2014 Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345 (6197), 647650.CrossRefGoogle ScholarPubMed
Tavakol, B., Bozlar, M., Punckt, C., Froehlicher, G., Stone, H.A., Aksay, I.A. & Holmes, D.P. 2014 Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. Soft Matt. 10 (27), 47894794.CrossRefGoogle ScholarPubMed
Treml, B., Gillman, A., Buskohl, P. & Vaia, R. 2018 Origami mechanologic. Proc. Natl Acad. Sci. USA 115 (27), 69166921.CrossRefGoogle ScholarPubMed
Vogel, S. 1984 Drag and flexibility in sessile organisms. Am. Zool. 24 (1), 3744.CrossRefGoogle Scholar
Waitukaitis, S., Menaut, R., Chen, B.G. & Van Hecke, M. 2015 Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114 (5), 055503.CrossRefGoogle ScholarPubMed
Wei, Z.-B., Dai, X., Quan, Q. & Cai, K.-Y. 2016 Drogue dynamic model under bow wave in probe-and-drogue refueling. IEEE Trans. Aerosp. Electron. Syst. 52 (4), 17281742.CrossRefGoogle Scholar
von Wieselsberger, C. 1921 Neuere feststellungen under die gesetze des flussigkeits und luftwiderstandes. Phys. Z 22, 321328.Google Scholar
Yasuda, H., Chen, Z. & Yang, J. 2016 Multitransformable leaf-out origami with bistable behavior. J. Mech. Robot. 8 (3), 031013.CrossRefGoogle Scholar
Zhang, J., Changguo, W.A. & Zhang, L. 2022 Deployment of SMP Miura-ori sheet and its application: aerodynamic drag and RCS reduction. Chin. J. Aeronaut. 35 (8), 121131.CrossRefGoogle Scholar
Zhang, J., Li, T., Wang, C. & Yan, X. 2021 Aerodynamic drag characteristics of Miura-ori composite structure. J. Aerosp. Engng 34 (4), 06021004.CrossRefGoogle Scholar
Zuliani, F., Liu, C., Paik, J. & Felton, S.M. 2018 Minimally actuated transformation of origami machines. IEEE Robot. Autom. Lett. 3 (3), 14261433.CrossRefGoogle Scholar
Supplementary material: File

Nain et al. supplementary material

Nain et al. supplementary material
Download Nain et al. supplementary material(File)
File 1.3 MB