Hostname: page-component-55f67697df-gmt7q Total loading time: 0 Render date: 2025-05-08T19:47:37.001Z Has data issue: false hasContentIssue false

Linear stability analysis of a vertical liquid film over a moving substrate

Published online by Cambridge University Press:  27 November 2024

Fabio Pino*
Affiliation:
EA Department, The von Kármán Institute for Fluid Dynamics, 1640 Sint Genesius Rode, Belgium Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, 1050 Brussels, Belgium
Miguel A. Mendez
Affiliation:
EA Department, The von Kármán Institute for Fluid Dynamics, 1640 Sint Genesius Rode, Belgium
Benoit Scheid
Affiliation:
Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, 1050 Brussels, Belgium
*
Email address for correspondence: [email protected]

Abstract

The stability of liquid-film flows is essential in many industrial applications. In the dip-coating process, a liquid film forms over a substrate extracted at a constant speed from a bath. We studied the linear stability of this film considering different thicknesses $\hat {h}$ for four liquids, spanning an extensive range of Kapitza numbers ($Ka$). By solving the Orr–Sommerfeld eigenvalue problem with the Chebyshev–Tau spectral method, we calculated the threshold between growing and decaying perturbations, investigated the instability mechanism, and computed the absolute/convective threshold. The instability mechanism was studied by analysing the perturbations’ vorticity distribution and the kinetic energy balance. It was found that liquids with low $Ka$ (e.g. corn oil, $Ka = 4$) are stable for a smaller range of wavenumbers compared with liquid with high $Ka$ (e.g. liquid zinc, $Ka = 11\,525$). Surface tension has a stabilising and a destabilising effect. For long waves, it curves the vorticity lines near the substrate, reducing the flow under the crests. For short waves, it fosters vorticity production at the interface and creates a region of intense vorticity near the substrate. In addition, we discovered that the surface tension contributes to both the production and dissipation of perturbation's energy depending on the $Ka$ number. Regarding the absolute/convective threshold, we identified a window in the parameter space where unstable waves propagate throughout the entire domain (indicating absolute instability). Perturbations affecting Derjaguin's solution ($\hat {h}=1$) for $Ka<17$ and the Landau–Levich–Derjaguin solution ($\hat {h}=0.945 Re^{1/9}Ka^{-1/6}$), are advected by the flow (indicating convective instability).

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avanci, M.P, Rodríguez, D. & Alves, L.S.deB. 2019 A geometrical criterion for absolute instability in separated boundary layers. Phys. Fluids 31 (1), 014103.CrossRefGoogle Scholar
Barreiro-Villaverde, D., Gosset, A., Lema, M. & Mendez, M.A. 2023 Damping of three-dimensional waves on coating films dragged by moving substrates. Phys. Fluids 35 (7), 072110.CrossRefGoogle Scholar
Benjamin, T.B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2 (6), 554573.CrossRefGoogle Scholar
Benney, D.J. 1966 Long waves on liquid films. Journal of mathematics and physics 45 (1–4), 150155.CrossRefGoogle Scholar
Bourne, D. 2003 Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues. Contin. Mech. Thermodyn. 15, 571579.CrossRefGoogle Scholar
Boyd, J.P. 2001 Chebyshev and Fourier Spectral methods. Courier Corporation.Google Scholar
Brevdo, L., Laure, P., Dias, F. & Bridges, T.J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.CrossRefGoogle Scholar
Briggs, R.J. 1964 Electron-stream Interaction With Plasmasvol. 187. MIT Press.CrossRefGoogle Scholar
Brun, P-T., Damiano, A., Rieu, P., Balestra, G. & Gallaire, F. 2015 Rayleigh–Taylor instability under an inclined plane. Phys. Fluids 27 (8), 084107.CrossRefGoogle Scholar
Buchlin, J.M. 1997 Modeling of gas-jet wiping. In Thin Liquid Films and Coating Processes, VKI Lecture Series. von Kármán Institute for Fluid Dynamics, Belgium.Google Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A., Thomas, A., Jr. 2012 Spectral Methods in Fluid Dynamics. Springer Science & Business Media.Google Scholar
Charru, F. 2011 Hydrodynamic Instabilities, vol. 37. Cambridge University Press.CrossRefGoogle Scholar
Colinet, P., Legros, J.C. & Velarde, M.G. 2001 Nonlinear Dynamics of Surface-Tension-Driven Instabilities, vol. 527. Wiley Online Library.CrossRefGoogle Scholar
Dawkins, P.T., Dunbar, S.R. & Douglass, R.W. 1998 The origin and nature of spurious eigenvalues in the spectral tau method. J. Comput. Phys. 147 (2), 441462.CrossRefGoogle Scholar
Derjaguin, B.V. 1943 On the thickness of the liquid film adhering to the walls of a vessel after emptying. Acta Physicochim. URSS 20, 349352.Google Scholar
Derjaguin, B.V.C.R. 1944 On the thickness of the liquid film adhering to the walls of a vessel after emptying. Prog. Surf. Sci. 43 (1–4), 134137.CrossRefGoogle Scholar
Dietze, G.F., Al-Sibai, F. & Kneer, R. 2009 Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 637, 73104.CrossRefGoogle Scholar
Gardner, D.R., Trogdon, S.A. & Douglass, R.W. 1989 A modified tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys. 80 (1), 137167.CrossRefGoogle Scholar
Gaster, M. 1968 Growth of disturbances in both space and time. Phys. Fluids 11 (4), 723727.CrossRefGoogle Scholar
Gosset, A. & Buchlin, J.-M. 2006 Jet wiping in hot-dip galvanization. J. Fluids Engng 129 (4), 466475.CrossRefGoogle Scholar
Gosset, A., Mendez, M.A. & Buchlin, J.-M. 2019 An experimental analysis of the stability of the jet wiping process. Part I. Characterization of the coating uniformity. Exp. Therm. Fluid Sci. 103, 5165.CrossRefGoogle Scholar
Gosset, A.M. 2007 Study of the interaction between a gas flow and a liquid film entrained by a moving surface (unpublished doctoral dissertation). PhD thesis, Université Libre de Bruxelle.Google Scholar
Huerre, P. & Monkewitz, P.A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Ivanova, T., Pino, F., Scheid, B. & Mendez, M.A. 2022 Evolution of waves in liquid films on moving substrates. arXiv:2203.08201CrossRefGoogle Scholar
Johnson, D. 1996 Chebyshev polynomials in the spectral tau method and applications to eigenvalue problems. NASA Tech. Rep.. National Aeronautics and Space Administration (NASA).Google Scholar
Jose, A., Pareek, S. & Radhakrishnan, E.K. 2020 Advances in edible fruit coating materials. Advances in Agri-food Biotechnology (ed. T.R. Sharma, R. Deshmukh & H. Sonah), pp. 391–408. Springer Singapore.CrossRefGoogle Scholar
Kalliadasis, S., Ruyer-Quil, C., Scheid, B., Velarde, M.G. 2011 Falling Liquid Films, vol. 176. Springer Science & Business Media.Google Scholar
Kelly, R.E., Goussis, D.A., Lin, S.P. & Hsu, F.K. 1989 The mechanism for surface wave instability in film flow down an inclined plane. Phys. Fluids A: Fluid Dyn. 1 (5), 819828.CrossRefGoogle Scholar
Kuklík, V. & Kudlacek, J. 2016 Hot-dip Galvanizing of Steel Structures. Butterworth-Heinemann.Google Scholar
Kupfer, K., Bers, A. & Ram, A.K. 1987 The cusp map in the complex-frequency plane for absolute instabilities. Phys. Fluids 30 (10), 30753082.CrossRefGoogle Scholar
Lanczos, C. 1988 Applied Analysis. Courier Corporation.Google Scholar
Landau, L. & Levich, B 1988 Dragging of a liquid by a moving plate. In Dynamics of Curved Fronts, pp. 141–153. Elsevier.CrossRefGoogle Scholar
Ledda, P.G., Balestra, G., Lerisson, G., Scheid, B., Wyart, M. & Gallaire, F. 2021 Hydrodynamic-driven morphogenesis of karst draperies: spatio-temporal analysis of the two-dimensional impulse response. J. Fluid Mech. 910, A53.CrossRefGoogle Scholar
Lighthill, M.J. 1963 Introduction Boundary Layer Theory. Oxford University Press.Google Scholar
Lin, S.P. 1970 Roles of surface tension and Reynolds stresses on the finite amplitude stability of a parallel flow with a free surface. J. Fluid Mech. 40 (2), 307314.CrossRefGoogle Scholar
Lin, S.P., Lian, Z.W. & Creighton, B.J. 1990 Absolute and convective instability of a liquid sheet. J. Fluid Mech. 220, 673689.CrossRefGoogle Scholar
Liu, J., Paul, J.D. & Gollub, J.P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.CrossRefGoogle Scholar
Mendez, M.A., Gosset, A., Scheid, B., Balabane, M. & Buchlin, J.-M. 2021 Dynamics of the jet wiping process via integral models. J. Fluid Mech. 911, A47.CrossRefGoogle Scholar
Morton, B.R. 1984 The generation and decay of vorticity. Geophys. Astrophys. Fluid Dyn. 28 (3–4), 277308.CrossRefGoogle Scholar
Ortiz, E.L. 1969 The tau method. SIAM J. Numer. Anal. 6 (3), 480492.CrossRefGoogle Scholar
Pelisson Chimetta, B., Hossain, M.Z. & de Moraes Franklin, E. 2018 Numerical solution for Kapitza waves on a thin liquid film. J. Braz. Soc. Mech. Sci. Engng 40 (8), 111.Google Scholar
Pier, B. 2003 Open-loop control of absolutely unstable domains. Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 459 (2033), 11051115.CrossRefGoogle Scholar
Pino, F., Mendez, M.A. & Scheid, B. 2024 Absolute and convective instabilities in a liquid film over a substrate moving against gravity. Phys. Rev. Fluids 9 (10), 104002.Google Scholar
Pino, F., Scheid, B. & Mendez, M.A. 2024 Absolute/convective instability threshold in inverted falling film through linear stability analysis. In AIP Conference Proceedings, vol. 3094. AIP Publishing.CrossRefGoogle Scholar
Scheid, B., Kofman, N. & Rohlfs, W. 2016 Critical inclination for absolute/convective instability transition in inverted falling films. Phys. fluids 28 (4), 044107.CrossRefGoogle Scholar
Schmid, P.J., Henningson, D.S. & 2002 Stability and transition in shear flows. Applied Mathematical Sciences, Vol. 142 Springer-Verlag.CrossRefGoogle Scholar
Scriven, L.E. 1988 Physics and applications of dip coating and spin coating. MRS Online Proc. Library (OPL) 121, 717.CrossRefGoogle Scholar
Sharmin, E., Zafar, F., Akram, D., Alam, M. & Ahmad, S. 2015 Recent advances in vegetable oils based environment friendly coatings: a review. Ind. Crops Prod. 76, 215229.CrossRefGoogle Scholar
Smith, M.K. 1990 The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech. 217, 469485.CrossRefGoogle Scholar
Snoeijer, J.H., Ziegler, J., Andreotti, B., Fermigier, M. & Eggers, J. 2008 Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100, 244502.CrossRefGoogle ScholarPubMed
Sterman-Cohen, E., Bestehorn, M. & Oron, A. 2017 Rayleigh–Taylor instability in thin liquid films subjected to harmonic vibration. Phys. Fluids 29 (5), 052105.CrossRefGoogle Scholar
Suhag, R., Kumar, N., Petkoska, A.T. & Upadhyay, A. 2020 Film formation and deposition methods of edible coating on food products: a review. Food Res. Intl 136, 109582.CrossRefGoogle ScholarPubMed
Suslov, S.A. 2006 Numerical aspects of searching convective/absolute instability transition. J. Comput. Phys. 212 (1), 188217.CrossRefGoogle Scholar
Thual, S., Thual, O. & Dewitte, B. 2013 Absolute or convective instability in the equatorial Pacific and implications for ENSO. Q. J. R. Meteorol. Soc. 139 (672), 600606.CrossRefGoogle Scholar
Trefethen, L.N. & Bau, D. 2022 Numerical Linear Algebra, vol. 181. SIAM.Google Scholar
Tu, C.V. & Ellen, C.H. 1986 Stability of liquid coating in the jet stripping process. In 9th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 8–12 December. University of Auckland.Google Scholar
Weinstein, S.J. & Ruschak, K.J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
Wilson, S.D.R. 1982 The drag-out problem in film coating theory. J. Engng Math. 16 (3), 209221.CrossRefGoogle Scholar
Wu, J.-Z. 1995 A theory of three-dimensional interfacial vorticity dynamics. Phys. Fluids 7 (10), 23752395.CrossRefGoogle Scholar
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321334.CrossRefGoogle Scholar
Yih, C.-S. 1991 Stability of liquid flow down an inclined plane. Selected Papers By Chia-Shun Yih: (In 2 Volumes), 357 370. World Scientific.CrossRefGoogle Scholar