Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-30T05:45:57.625Z Has data issue: false hasContentIssue false

Active noise control of a supersonic underexpanded planar jet guided by resolvent analysis

Published online by Cambridge University Press:  05 December 2024

Long-Long Liang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Zhen-Hua Wan*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Ming-Xuan She
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Peng-Jun-Yi Zhang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
De-Jun Sun
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Xi-Yun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
*
Email address for correspondence: [email protected]

Abstract

This study is dedicated to achieving efficient active noise control in a supersonic underexpanded planar jet, utilizing control parameters informed by resolvent analysis. The baseline supersonic underexpanded jet exhibits complex wave structures and substantial high-amplitude noise radiations. To perform the active control, unsteady blowing and suction are applied along the nozzle inner wall close to the exit. Employing both standard and acoustic resolvent analyses, a suitable frequency and spanwise wavenumber range for the blowing and suction is identified. Within this range, the control forcing can be significantly amplified in the near field, effectively altering the original sound-producing energetic structure while minimizing far-field amplification to prevent excessive noise. A series of large-eddy simulations are further conducted to validate the control efficiency, demonstrating an over 10 dB reduction in upstream-propagated screech noise. It is identified that the present unsteady control proves more effective than steady control at the same momentum coefficient. The controlled jet flow indicates that the shock structures become more stable, and the stronger the streamwise amplification of the forcing, the more likely it is to modify the mean flow characteristics, which is beneficial for reducing far-field noise radiation. Spectral proper orthogonal decomposition analysis of the controlled flow confirms that the control redistributes energy to higher forcing frequencies and suppresses large-scale antisymmetric and symmetric modes related to screech and its harmonics. The findings of this study highlight the potential of resolvent-guided control techniques in reducing noise in supersonic underexpanded jets and provide a detailed understanding of the inherent mechanisms for effective noise reduction through active control strategies.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abreu, L.I., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R. & Henningson, D.S. 2020 Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J. Fluid Mech. 900, A11.CrossRefGoogle Scholar
Alapati, J.K.K. & Srinivasa, K. 2024 Screech receptivity control using exit lip surface roughness for under-expanded jet noise reduction. Phys. Fluids 36 (1), 016113.CrossRefGoogle Scholar
Alkislar, M.B., Krothapalli, A. & Butler, G.W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.CrossRefGoogle Scholar
Arakeri, V., Krothapalli, A., Siddavaram, V., Alkislar, M.B. & Lourenco, L.M. 2003 On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 7598.CrossRefGoogle Scholar
Bae, H.J., Dawson, S.T.M. & McKeon, B.J. 2020 Resolvent-based study of compressibility effects on supersonic turbulent boundary layers. J. Fluid Mech. 883, A29.CrossRefGoogle Scholar
Beneddine, S., Mettot, C. & Sipp, D. 2015 Global stability analysis of underexpanded screeching jets. Eur. J. Mech. (B/Fluids) 49, 392399.CrossRefGoogle Scholar
Berland, J., Bogey, C. & Bailly, C. 2007 Numerical study of screech generation in a planar supersonic jet. Phys. Fluids 19 (7), 075105.CrossRefGoogle Scholar
Bugeat, B., Chassaing, J.-C., Robinet, J.-C. & Sagaut, P. 2019 3d global optimal forcing and response of the supersonic boundary layer. J. Comput. Phys. 398, 108888.CrossRefGoogle Scholar
Bugeat, B., Karban, U., Agarwal, A., Lesshafft, L. & Jordan, P. 2024 Acoustic resolvent analysis of turbulent jets. Theor. Comput. Fluid Dyn. 38, 687706.CrossRefGoogle Scholar
Castelain, T., Sunyach, M., Juvé, D. & Bera, J.-C. 2008 Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J. 46 (5), 10811087.CrossRefGoogle Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (part I). Acta Mech. 1 (3), 215234.CrossRefGoogle Scholar
Coderoni, M., Lyrintzis, A.S. & Blaisdell, G.A. 2019 Large-eddy simulations analysis of supersonic heated jets with fluid injection for noise reduction. AIAA J. 57 (8), 34423455.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets–a review. Intl J. Aeroacoust. 18 (2-3), 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Li, X., Liu, N., He, F., Wong, T.Y., Mackenzie, J. & Nogueira, P. 2022 A unifying theory of jet screech. J. Fluid Mech. 945, A8.CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P. & Towne, A. 2021 Waves in screeching jets. J. Fluid Mech. 913, A7.CrossRefGoogle Scholar
Farghadan, A., Martini, E. & Towne, A. 2023 Scalable resolvent analysis for three-dimensional flows. Preprint, arXiv:2309.04617.Google Scholar
Gaitonde, D. & Samimy, M. 2010 Effect of plasma-based azimuthal mode excitation on supersonic jet flow. AIAA Paper 2010-4416.CrossRefGoogle Scholar
Gaitonde, D. & Samimy, M. 2011 Coherent structures in plasma-actuator controlled supersonic jets: axisymmetric and mixed azimuthal modes. Phys. Fluids 23 (9), 095104.CrossRefGoogle Scholar
Gautam, K., Karnam, A., Mohammed, A., Saleem, M. & Gutmark, E. 2024 Internal fluidic injection for the control of supersonic rectangular jet noise. AIAA Paper 2024-2464.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Mihaescu, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7), 29182924.CrossRefGoogle Scholar
Gojon, R., Gutmark, E. & Mihaescu, M. 2019 Antisymmetric oscillation modes in rectangular screeching jets. AIAA J. 57 (8), 34223441.CrossRefGoogle Scholar
Greska, B. & Krothapalli, A. 2005 The near-field effects of microjet injection. AIAA Paper 2005-3046.CrossRefGoogle Scholar
Henderson, B. 2010 Fifty years of fluidic injection for jet noise reduction. Intl J. Aeroacoust. 9 (1-2), 91122.CrossRefGoogle Scholar
Herrmann, B., Baddoo, P.J., Semaan, R., Brunton, S.L. & McKeon, B.J. 2021 Data-driven resolvent analysis. J. Fluid Mech. 918, A10.CrossRefGoogle Scholar
Ibrahim, M.K., Kunimura, R. & Nakamura, Y. 2002 Mixing enhancement of compressible jets by using unsteady microjets as actuators. AIAA J. 40 (4), 681688.CrossRefGoogle Scholar
Jiang, Y., Shu, C.W. & Zhang, M. 2013 An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35 (2), A1137A1160.CrossRefGoogle Scholar
Jovanovic, M.R. 2004 Modeling, analysis, and control of spatially distributed systems. PhD thesis, University of California, Santa Barbara.Google Scholar
Karami, S., Edgington-Mitchell, D., Theofilis, V. & Soria, J. 2020 a Characteristics of acoustic and hydrodynamic waves in under-expanded supersonic impinging jets. J. Fluid Mech. 905, A34.CrossRefGoogle Scholar
Karami, S., Stegeman, P.C., Ooi, A., Theofilis, V. & Soria, J. 2020 b Receptivity characteristics of under-expanded supersonic impinging jets. J. Fluid Mech. 889, A27.CrossRefGoogle Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2011 A study of Mach wave radiation using active control. J. Fluid Mech. 681, 261292.CrossRefGoogle Scholar
Kibens, V., Dorris, J. III, Smith, D. & Mossman, M. 1999 Active flow control technology transition-the boeing ACE program. AIAA Paper 1999-3507.CrossRefGoogle Scholar
Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A.V.G. & Jordan, P. 2019 Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4 (6), 063901.CrossRefGoogle Scholar
Li, B., Ye, C.C., Wan, Z.H., Liu, N.S., Sun, D.J. & Lu, X.Y. 2020 a Noise control of subsonic flow past open cavities based on porous floors. Phys. Fluids 32 (12), 125101.CrossRefGoogle Scholar
Li, X.R., Zhang, X.W., Hao, P.F. & He, F. 2020 b Acoustic feedback loops for screech tones of underexpanded free round jets at different modes. J. Fluid Mech. 902, A17.CrossRefGoogle Scholar
Liang, L.-L., Wan, Z.-H., Ye, C.-C., Zhang, P.-J.-Y., Sun, D.-J. & Lu, X.-Y. 2023 Flow dynamics and noise generation mechanisms in supersonic underexpanded rectangular and planar jets. AIP Adv. 13 (6), 065128.CrossRefGoogle Scholar
Liu, Q., Prasad, C. & Gaitonde, D.V. 2022 Resolvent analysis of an under-expanded planar supersonic impinging jet. AIAA Paper 2022-3408, p. 3408.Google Scholar
Liu, Q., Sun, Y.Y., Yeh, C.-A., Ukeiley, L.S., Cattafesta, L.N. & Taira, K. 2021 Unsteady control of supersonic turbulent cavity flow based on resolvent analysis. J. Fluid Mech. 925, A5.CrossRefGoogle Scholar
Mahfoze, O.A., Moody, A., Wynn, A., Whalley, R.D. & Laizet, S. 2019 Reducing the skin-friction drag of a turbulent boundary-layer flow with low-amplitude wall-normal blowing within a bayesian optimization framework. Phys. Rev. Fluids 4 (9), 094601.CrossRefGoogle Scholar
Manson, L. & Burge, H.L. 1971 Jet-noise reduction through liquid-base foam injection. Acoust. Soc. Am. 50 (4A), 10671074.CrossRefGoogle Scholar
Martens, S. & Haber, L. 2008 Jet noise reduction for high speed exhaust systems. In Turbo Expo: Power for Land, Sea, and Air, vol. 43161, pp. 805–814. ASME.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Merle, M. 1956 Sur la frequence des ondes sonores emises par un jet dair a grande vitesse. C. R. Hebd. Seances Acad. Sci. 243 (5), 490493.Google Scholar
Morris, P.J., McLaughlin, D.K. & Kuo, C.W. 2013 Noise reduction in supersonic jets by nozzle fluidic inserts. J. Sound Vib. 332 (17), 39924003.CrossRefGoogle Scholar
Nesbitt, E., Brusniak, L., Underbrink, J., Lynch, D. & Martinez, M. 2007 Effects of chevrons on engine jet noise structure. AIAA Paper 2007-3597.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Nogueira, P.A.S., Cavalieri, A.V.G., Jordan, P. & Jaunet, V. 2019 Large-scale streaky structures in turbulent jets. J. Fluid Mech. 873, 211237.CrossRefGoogle Scholar
Nogueira, P.A.S., Jaunet, V., Mancinelli, M., Jordan, P. & Edgington-Mitchell, D. 2022 a Closure mechanism of the A1 and A2 modes in jet screech. J. Fluid Mech. 936, A10.CrossRefGoogle Scholar
Nogueira, P.A.S., Jordan, P., Jaunet, V., Cavalieri, A.V.G., Towne, A. & Edgington-Mitchell, D. 2022 b Absolute instability in shock-containing jets. J. Fluid Mech. 930, A10.CrossRefGoogle Scholar
Norum, T. 2004 Reductions in multi-component jet noise by water injection. AIAA Paper 2004-2976.CrossRefGoogle Scholar
Papamoschou, D. 2018 Wavepacket modeling of the jet noise source. Intl J. Aeroacoust. 17 (1-2), 5269.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Nogueira, P.A.S., Cavalieri, A.V.G., Schmidt, O.T. & Colonius, T. 2020 a Lift-up, Kelvin–Helmholtz and orr mechanisms in turbulent jets. J. Fluid Mech. 896, A2.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Schmidt, O.T., Sipp, D. & Colonius, T. 2021 a Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets. J. Fluid Mech. 917, A29.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Sipp, D., Schmidt, O.T. & Colonius, T. 2019 Eddy viscosity for resolvent-based jet noise models. AIAA paper 2019-2454.CrossRefGoogle Scholar
Pickering, E., Towne, A., Jordan, P. & Colonius, T. 2021 b Resolvent-based modeling of turbulent jet noise. J. Acoust. Soc. Am. 150 (4), 24212433.CrossRefGoogle ScholarPubMed
Pickering, E., Towne, A., Jordan, P. & Colonius, T. 2020 b Resolvent-based jet noise models: a projection approach. In AIAA Scitech 2020 Forum, p. 0999. AIAA.CrossRefGoogle Scholar
Powell, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. 66, 10391056.CrossRefGoogle Scholar
Powers, R. & McLaughlin, D. 2012 Acoustics measurements of scale models of military style supersonic beveled nozzle jets with interior corrugations. AIAA Paper 2012-2116.CrossRefGoogle Scholar
Prasad, A.L.N. & Unnikrishnan, S. 2023 Effect of plasma actuator-based control on flow-field and acoustics of supersonic rectangular jets. J. Fluid Mech. 964, A11.CrossRefGoogle Scholar
Prasad, A.L.N. & Unnikrishnan, S. 2024 a Flow-field and acoustics of over-expanded rectangular jets subjected to LAFPA based control. AIAA Paper 2024-2304.Google Scholar
Prasad, A.L.N. & Unnikrishnan, S. 2024 b Noise mitigation in rectangular jets through plasma actuator-based shear layer control. J. Fluid Mech. 979, A16.CrossRefGoogle Scholar
Prasad, C. & Morris, P.J. 2020 A study of noise reduction mechanisms of jets with fluid inserts. J. Sound Vib. 476, 115331.CrossRefGoogle Scholar
Raman, G. 1997 Cessation of screech in underexpanded jets. J. Fluid Mech. 336, 6990.CrossRefGoogle Scholar
Raman, G. & Cornelius, D. 1995 Jet mixing control using excitation from miniature oscillating jets. AIAA J. 33 (2), 365368.CrossRefGoogle Scholar
Rask, O., Kastner, J. & Gutmark, E. 2011 Understanding how chevrons modify noise in supersonic jet with flight effects. AIAA J. 49 (8), 15691576.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 a Active control of a Mach 0.9 jet for noise mitigation using plasma actuators. AIAA J. 45 (4), 890901.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 b Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H. & Kearney-Fischer, M. 2009 Active control of noise in supersonic jets using plasma actuators. AIAA Paper 2009-97107, p. 48821.Google Scholar
Samimy, M., Kim, J.-H., Kearney-Fischer, M. & Sinha, A. 2010 Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet. J. Fluid Mech. 656, 507529.CrossRefGoogle Scholar
Samimy, M., Webb, N., Esfahani, A. & Leahy, R. 2023 Perturbation-based active flow control in overexpanded to underexpanded supersonic rectangular twin jets. J. Fluid Mech. 959, A13.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Bres, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Seiner, J., Ukeiley, L. & Jansen, B. 2005 Aero-performance efficient noise reduction for the f404-400 engine. AIAA Paper 2005-3048.CrossRefGoogle Scholar
Sharma, A.S., Moarref, R., McKeon, B.J., Park, J.S., Graham, M.D. & Willis, A.P. 2016 Low-dimensional representations of exact coherent states of the Navier–Stokes equations from the resolvent model of wall turbulence. Phys. Rev. E 93 (2), 021102.CrossRefGoogle ScholarPubMed
Shu, C.W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Sipp, D. & Marquet, O. 2013 Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer. Theor. Comput. Fluid Dyn. 27, 617635.CrossRefGoogle Scholar
Suzuki, T. & Lele, S.K. 2003 Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139167.CrossRefGoogle Scholar
Tam, C.K. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.CrossRefGoogle Scholar
Tam, C.K. & Hu, F.Q. 2023 Jet noise reduction: a fresh start. AIAA Paper 2023-4519, p. 4519.Google Scholar
Tam, C.K. & Norum, T.D. 1992 Impingement tones of large aspect ratio supersonic rectangular jets. AIAA J. 30 (2), 304311.CrossRefGoogle Scholar
Tamburello, D.A. & Amitay, M. 2008 Active control of a free jet using a synthetic jet. Intl J. Heat Fluid Flow 29 (4), 967984.CrossRefGoogle Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Trefethen, L.N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.CrossRefGoogle Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Ye, C.C., Zhang, P.J.Y., Wan, Z.H., Sun, D.J. & Lu, X.Y. 2020 Numerical investigation of the bevelled effects on shock structure and screech noise in planar supersonic jets. Phys. Fluids 32 (8), 086103.CrossRefGoogle Scholar
Ye, C.C., Zhang, P.J.Y., Wan, Z.H., Yan, R. & Sun, D.J. 2022 Accelerating CFD simulation with high order finite difference method on curvilinear coordinates for modern GPU clusters. Adv. Aerodyn. 4 (1), 132.CrossRefGoogle Scholar
Yeh, C.-A., Benton, S.I., Taira, K. & Garmann, D.J. 2020 Resolvent analysis of an airfoil laminar separation bubble at $re= 500 000$. Phys. Rev. Fluids 5 (8), 083906.CrossRefGoogle Scholar
Yeh, C.-A. & Taira, K. 2019 Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech. 867, 572610.CrossRefGoogle Scholar
Zaman, K.B.M.Q. 2010 Subsonic jet noise reduction by microjets-a parametric study. Intl J. Aeroacoust. 9 (6), 705732.CrossRefGoogle Scholar
Zigunov, F., Sellappan, P. & Alvi, F.S. 2022 Reduction of noise in cold and hot supersonic jets using active flow control guided by a genetic algorithm. J. Fluid Mech. 952, A40.CrossRefGoogle Scholar