Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-28T20:47:33.768Z Has data issue: false hasContentIssue false

A growth curve model to estimate longitudinal effects of parental BMI on Indonesian children’s growth patterns

Published online by Cambridge University Press:  26 September 2024

Yoseph Leonardo Samodra
Affiliation:
School of Public Health, Taipei Medical University, New Taipei City, Taiwan
Ying-Chih Chuang*
Affiliation:
School of Public Health, Taipei Medical University, New Taipei City, Taiwan
*
Corresponding author: Ying-Chih Chuang; Email: [email protected].

Abstract

The global surge in childhood obesity is also evident in Indonesia. Parental body mass index (BMI) values were found to be one of the major determinants of the increasing prevalence of childhood obesity. It is uncertain if parental BMI during their offspring’s childhood significantly affects their children’s BMI trajectories into adulthood. We aimed to investigate the influence of parental BMI Z-scores on BMI trajectories of Indonesian school-aged children, with a focus on sex-specific effects. This study utilized data from the Indonesian Family Life Survey and tracked the same respondents over four time points, from wave 2 (1997–1998) to wave 5 (2014–2015). The sample of this study consisted of children aged 5–12 years in wave 2 for whom height and weight data were available. We utilized a two-level growth curve model to account for the hierarchical structure of the data, with time nested within individual children. Fathers’ BMI Z-scores in wave 2 had a pronounced influence (β = 0.31) on female children’s BMI Z-scores compared to the influence of mothers’ BMI Z-scores (β = 0.17). Mothers’ BMI Z-scores in wave 2 showed a stronger positive association with male children’s BMI Z-scores (β = 0.22) than did the father’s BMI Z-scores (β = 0.19). A significant interaction of fathers’ BMI Z-scores and years of follow-up was found for male children. As male children’s BMI Z-scores increased by year, this effect was stronger in those whose fathers’ BMI Z-scores were at a higher level. In conclusion, we found that parental BMI values profoundly influenced their children’s BMI trajectories.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Togbo, IDR. Obesogenic factors influencing overweight among asian children and youth. J Heal Res Rev. 2018; 5(1), 111116.Google Scholar
Oddo, VM, Maehara, M, Rah, JH. Overweight in Indonesia: an observational study of trends and risk factors among adults and children. BMJ Open. 2019; 9(9), 114.CrossRefGoogle ScholarPubMed
Endalifer, ML, Epidemiology, Diress G. Predisposing factors, biomarkers, and prevention mechanism of obesity: a systematic review. J Obes. 2020; 2020(6134362), 18.CrossRefGoogle ScholarPubMed
Sutherland, ME. Prevalence of overweight and obesity among African American children and adolescents: risk factors, health outcomes, and prevention/Intervention strategies. J Racial Ethn Heal Disparities. 2021; 8(5), 12811292.CrossRefGoogle ScholarPubMed
Parikka, S, Mäki, P, Levälahti, E, Lehtinen-Jacks, S, Martelin, T, Laatikainen, T. Associations between parental BMI, socioeconomic factors, family structure and overweight in Finnish children: A path model approach disease epidemiology - chronic. BMC Public Health. 2015; 15(1), 110.CrossRefGoogle Scholar
Mattsson, M, Maher, GM, Boland, F, Fitzgerald, AP, Murray, DM, Biesma, R. Group-based trajectory modelling for BMI trajectories in childhood: a systematic review. Obes Rev. 2019; 20(7), 9981015.CrossRefGoogle ScholarPubMed
Fan, HY, Lee, YL, Yang, SH, Chien, YW, Chao, JCJ, Chen, YC. Comprehensive determinants of growth trajectories and body composition in school children: a longitudinal cohort study. Obes Res Clin Pract. 2018; 12(3), 270276.CrossRefGoogle ScholarPubMed
Litchford, A, Savoie Roskos, MR, Wengreen, H. Influence of fathers on the feeding practices and behaviors of children: a systematic review. Appetite. 2020; 147(104558), 19.CrossRefGoogle ScholarPubMed
Garden, FL, Marks, GB, Simpson, JM, Webb, KL. Body mass index (BMI) trajectories from birth to 11.5 years: relation to early life food intake. Nutrients. 2012; 4(10), 13821398.CrossRefGoogle ScholarPubMed
Magarey, AM, Daniels, LA, Boulton, TJ, Cockington, RA. Predicting obesity in early adulthood from childhood and parental obesity. Int J Obes. 2003; 27(4), 505513.CrossRefGoogle ScholarPubMed
Svensson, V, Jacobsson, JA, Fredriksson, R, et al. Associations between severity of obesity in childhood and adolescence, obesity onset and parental BMI: a longitudinal cohort study. Int J Obes. 2011; 35(1), 4652.CrossRefGoogle ScholarPubMed
Power, C, Kuh, D, Morton, S. From developmental origins of adult disease to life course research on adult disease and aging: insights from birth cohort studies. Annu Rev Public Health. 2013; 34(1), 728.CrossRefGoogle ScholarPubMed
Eberle, C, Kirchner, MF, Herden, R, Stichling, S. Paternal metabolic and cardiovascular programming of their offspring: a systematic scoping review. PLoS One [Internet]. 2020; 15(12), 119.Google ScholarPubMed
Cisse, AH, Lioret, S, de Lauzon-Guillain, B, et al. Association between perinatal factors, genetic susceptibility to obesity and age at adiposity rebound in children of the EDEN mother-child cohort. Int J Obes. 2021; 45(8), 18021810.CrossRefGoogle ScholarPubMed
Sandholt, CH, Grarup, N, Pedersen, O, Hansen, T. Genome-wide association studies of human adiposity: zooming in on synapses. Mol Cell Endocrinol. 2015; 418, 90100.CrossRefGoogle Scholar
Lee, JS, Jin, MH, Lee, HJ. Global relationship between parent and child obesity: a systematic review and meta-analysis. Clin Exp Pediatr. 2022; 65(1), 3546.CrossRefGoogle ScholarPubMed
Warkentin, S, Mais, LA, do RD de Latorre, MO, Carnell, S, de Taddei J.A., AC. Parents matter: associations of parental BMI and feeding behaviors with child BMI in Brazilian preschool and school-aged children. Front Nutr. 2018; 5(8), 112.CrossRefGoogle ScholarPubMed
Niermann, CYN, Spengler, S, Gubbels, JS. Physical activity, screen time, and dietary intake in families: a cluster-analysis with mother-father-child triads. Front Public Heal. 2018; 6(9), 112.Google ScholarPubMed
Vinciguerra, F, Tumminia, A, Roppolo, F, et al. Impact of unhealthy childhood and unfavorable parents’ characteristics on adiposity in schoolchildren. Diabetes Metab Res Rev. 2019; 35(8), 17.CrossRefGoogle ScholarPubMed
Thamrin, SA, Arsyad, DS, Kuswanto, H, Lawi, A, Nasir, S. Predicting obesity in adults using machine learning techniques: an analysis of Indonesian basic health research 2018. Front Nutr. 2021; 8(669155), 115.CrossRefGoogle ScholarPubMed
Fatima, Y, Doi, SAR. Mamun AA.Sleep quality and obesity in young subjects: a meta-analysis. Obes Rev. 2016; 17(11), 11541166.CrossRefGoogle ScholarPubMed
Nurwanti, E, Hadi, H, Chang, JS, et al. Rural-urban differences in dietary behavior and obesity: results of the riskesdas study in 10-18-year-old Indonesian children and adolescents. Nutrients. 2019; 11(11), 114.CrossRefGoogle ScholarPubMed
Must, A, Anderson, SE. Body mass index in children and adolescents: considerations for population-based applications. Int J Obes. 2006; 30(4), 590594.CrossRefGoogle ScholarPubMed
Salahuddin, M, Pérez, A, Ranjit, N, Hoelscher, DM, Kelder, SH. The associations of large-for-gestational-age and infant feeding practices with children’s body mass index z-score trajectories: the early childhood longitudinal study, birth cohort. Clin Obes. 2017; 7(5), 307315.CrossRefGoogle ScholarPubMed
Phelan, H, Foster, NC, Schwandt, A, et al. Longitudinal trajectories of BMI z-score: an international comparison of 11,513 Australian, American and german/Austrian/Luxembourgian youth with type 1 diabetes. Pediatr Obes. 2020; 15(2), 19.CrossRefGoogle Scholar
Zhang, L, Huang, L, Zhao, Z, et al. Associations between delivery mode and early childhood body mass index Z-score trajectories: a retrospective analysis of 2,685 children from mothers aged 18 to 35 years at delivery. Front Pediatr. 2020; 8(12), 19.CrossRefGoogle ScholarPubMed
Caixeta, HCV, Amato, AA. Factors associated with overweight and abdominal obesity in Brazilian school-aged children: a comprehensive approach. Arch Endocrinol Metab. 2020; 64(4), 445453.Google ScholarPubMed
Caleyachetty, R, Stafford, M, Cooper, R, et al. Exposure to multiple childhood social risk factors and adult body mass index trajectories from ages 20 to 64 years. Eur J Public Health. 2021; 31(2), 385390.CrossRefGoogle ScholarPubMed
Strauss, J, Witoelar, F, Sikoki, B. The 5th Wave of the Indonesia Family Life Survey (IFLS): Overview and Field Report. 2016. RAND, Santa Monica, CA.Google Scholar
McAlister, FA, Yan, L, Roos, LL, Lix, LM. Parental atrial fibrillation and stroke or atrial fibrillation in young adults: a population-based cohort study. Stroke. 2019; 50(9), 23222328.CrossRefGoogle ScholarPubMed
Frankenberg, E, Thomas, D. The Indonesia Family Life Survey (IFLS): Study Design and Results from Waves 1 and 2. 2000. RAND, Santa Monica, CA.Google Scholar
Wang, Y, Chen, HJ. Use of percentiles and Z-scores in anthropometry. In Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease (eds. Preedy, VR), 2012; pp. 2948. Springer, New York.CrossRefGoogle Scholar
Aguilar-Morales, I, Colin-Ramirez, E, Rivera-Mancía, S, Vallejo, M, Vázquez-Antona, C. Performance of waist-to-height ratio, waist circumference, and body mass index in discriminating cardio-metabolic risk factors in a sample of school-aged Mexican children. Nutrients. 2018; 10(12), 114.CrossRefGoogle Scholar
Bella, A, Dartanto, T, Nurshadrina, DS, et al. Do parental smoking behaviors affect children’s thinness, stunting, and overweight status in Indonesia? Evidence from a large-scale longitudinal survey. J Fam Econ Issues. 2023; 44(3), 714726.CrossRefGoogle Scholar
Astutik, E, Hidajah, AC, Tama, TD, Efendi, F, Li, CY. Prevalence and determinants of depressive symptoms among adults in Indonesia: a cross-sectional population-based national survey. Nurs Forum. 2020; 56(1), 3744.CrossRefGoogle ScholarPubMed
Barus, JFA, Sudharta, H, Suswanti, I. Associations of sociodemographic and psychosocial factors with headache symptom among Indonesian adolescents based on the 5th wave of the Indonesian family life survey (IFLS-5). J Res Health Sci. 2023; 23(2), 17.CrossRefGoogle ScholarPubMed
Defianna, SR, Santosa, A, Probandari, A, Dewi, FST. Gender differences in prevalence and risk factors for hypertension among adult populations: a cross-sectional study in indonesia. Int J Environ Res Public Health. 2021; 18(12), 112.CrossRefGoogle ScholarPubMed
Idris, H, Tuzzahra, F. Factors associated with depressive symptoms among adolescents in Indonesia: a cross-sectional study of results from the Indonesia family life survey. Malaysian Fam Physician. 2023; 18, 19.Google ScholarPubMed
Pristyna, G, Mahmudiono, T, Rifqi, MA, Indriani, D. The relationship between big five personality traits, eating habits, physical activity, and obesity in Indonesia based on analysis of the 5th wave Indonesia family life survey, 2014. Front Psychol. 2022; 13(8), 117.CrossRefGoogle ScholarPubMed
Kim, Y, Radoias, V. Subjective socioeconomic status, health, and early-life conditions. J Health Psychol. 2021; 26(4), 595604.CrossRefGoogle ScholarPubMed
de Onis, M, Onyango, AW, Borghi, E, Siyam, A, Nishida, C, Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007; 85(9), 660667.CrossRefGoogle ScholarPubMed
Crimmins, NA, Dolan, LM, Martin, LJ, et al. Stability of adolescent body mass index during three years of follow-up. J Pediatr. 2007; 151(4), 383387.CrossRefGoogle ScholarPubMed
Gavela-Pérez, T, Garcés, C, Navarro-Sánchez, P, López Villanueva, L, Soriano-Guillén, L. Earlier menarcheal age in spanish girls is related with an increase in body mass index between pre-pubertal school age and adolescence. Pediatr Obes. 2015; 10(6), 410415.CrossRefGoogle ScholarPubMed
Feng, A, Wang, L, Chen, X, et al. Developmental origins of health and disease (DOHaD): implications for health and nutritional issues among rural children in China. Biosci Trends. 2015; 9(2), 8287.CrossRefGoogle ScholarPubMed
Abrego Del Castillo, KY, Dennis, CL, Wamithi, S, et al. Maternal BMI, breastfeeding and perinatal factors that influence early childhood growth trajectories: a scoping review. J Dev Orig Health Dis. 2022; 13(5), 541549.CrossRefGoogle ScholarPubMed
Smith, JD, Fu, E, Kobayashi, MA. Prevention and management of childhood obesity and its psychological and health comorbidities. Annu Rev Clin Psychol. 2020; 16(1), 351378.CrossRefGoogle ScholarPubMed
Kader, M, Sundblom, E, Elinder, LS. Effectiveness of universal parental support interventions addressing children’s dietary habits, physical activity and bodyweight: a systematic review. Prev Med (Baltim). 2015; 77, 5267.CrossRefGoogle ScholarPubMed
Nyberg, G, Sundblom, E, Norman, Å., Bohman, B, Hagberg, J, Elinder, LS. Effectiveness of a universal parental support programme to promote healthy dietary habits and physical activity and to prevent overweight and obesity in 6-year-old children: the healthy school start study, a cluster-randomised controlled trial. PLoS One. 2015; 10(2), 119.CrossRefGoogle ScholarPubMed
Hebestreit, A, Intemann, T, Siani, A, et al. Dietary patterns of european children and their parents in association with family food environment: results from the i.family study. Nutrients. 2017; 9(2), 117.CrossRefGoogle ScholarPubMed
Deliens, T, Deforche, B, De Bourdeaudhuij, I, Clarys, P. Determinants of physical activity and sedentary behaviour in university students: a qualitative study using focus group discussions. BMC Public Health. 2015; 15(1), 19.CrossRefGoogle Scholar
Mado, FG, Sirajuddin, S, Muis, M, Maria, IL, Darmawansyah, D, Arifin, MA. Intervention empowerment of families in preventing and controlling overweight and obesity in children: a systematic review. J Public Health Res. 2021; 10(2), 267273.CrossRefGoogle ScholarPubMed
Hesketh, KR, Lakshman, R, van Sluijs, EMF. Barriers and facilitators to young children’s physical activity and sedentary behaviour: a systematic review and synthesis of qualitative literature. Obes Rev. 2017; 18(9), 9871017.CrossRefGoogle ScholarPubMed
Reicks, M, Banna, J, Cluskey, M, et al. Influence of parenting practices on eating behaviors of early adolescents during independent eating occasions: implications for obesity prevention. Nutrients. 2015; 7(10), 87838801.CrossRefGoogle ScholarPubMed
Sule, FA, Uthman, OA, Olamijuwon, EO, et al. Examining vulnerability and resilience in maternal, newborn and child health through a gender lens in low-income and middle-income countries: a scoping review. BMJ Glob Heal. 2022; 7(4), 111.Google ScholarPubMed
Roche, A, Goto, K, Zhao, Y, Wolff, C. Bonding and bridging social and cultural capitals: perceived factors associated with family eating practices among Hmong, Latino, and white mothers and fathers. J Nutr Educ Behav. 2015; 47(6), 540547.e1.CrossRefGoogle ScholarPubMed
Cifkova, R, Pitha, J, Krajcoviechova, A, Kralikova, E. Is the impact of conventional risk factors the same in men and women? Plea for a more gender-specific approach. Int J Cardiol. 2019; 286, 214219.CrossRefGoogle ScholarPubMed
Shungin, D, Winkler, T, Croteau-Chonka, DC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015; 518(7538), 187196.CrossRefGoogle ScholarPubMed
Deveci, AC, Keown-Stoneman, CDG, Maguire, JL, et al. Paternal BMI in the preconception period, and the association with child zBMI. Int J Obes. 2023; 47(4), 280287.CrossRefGoogle ScholarPubMed
Mech, P, Hooley, M, Skouteris, H, Williams, J. Parent-related mechanisms underlying the social gradient of childhood overweight and obesity: a systematic review. Child Care Health Dev. 2016; 42(5), 603624.CrossRefGoogle ScholarPubMed
Vazquez, CE, Cubbin, C. Socioeconomic status and childhood obesity: a review of literature from the past decade to inform intervention research. Curr Obes Rep. 2020; 9(4), 562570.CrossRefGoogle ScholarPubMed
Fruhstorfer, BH, Mousoulis, C, Uthman, OA, Robertson, W. Socio-economic status and overweight or obesity among school-age children in sub-saharan Africa - a systematic review. Clin Obes. 2016; 6(1), 1932.CrossRefGoogle ScholarPubMed
Assari, S. Family income reduces risk of obesity for white but not black children. Children. 2018; 5(6), 113.CrossRefGoogle Scholar
Pirgon, Ö., Aslan, N. The role of urbanization in childhood obesity. J Clin Res Pediatr Endocrinol. 2015; 7(3), 163167.CrossRefGoogle ScholarPubMed
Kuddus, MA, Tynan, E, McBryde, E. Urbanization: a problem for the rich and the poor? Public Health Rev. 2020; 41(1), 14.CrossRefGoogle ScholarPubMed
de Bont, J, Márquez, S, Fernández-Barrés, S, et al. Urban environment and obesity and weight-related behaviours in primary school children. Environ Int. 2021; 155, 114.CrossRefGoogle ScholarPubMed
Janzon, E, Namusaazi, S, Bolmsjö, I. Increasing obesity in Ugandan women due to transition from rural to urban living conditions? a qualitative study on traditional body image, changed lifestyles and unawareness of risk for heart disease. J Res Obes. 2015; 2015, 113.Google Scholar
Althubaiti, A. Information bias in health research: definition, pitfalls, and adjustment methods. J Multidiscip Healthc. 2016; 9, 211217.CrossRefGoogle ScholarPubMed
Li, B, Adab, P, Cheng, KK. The role of grandparents in childhood obesity in China - evidence from a mixed methods study. Int J Behav Nutr Phys Act. 2015; 12(1), 19.CrossRefGoogle Scholar
Park, SH, Cormier, E. Influence of siblings on child health behaviors and obesity: a systematic review. J Child Fam Stud. 2018; 27(7), 20692081.CrossRefGoogle Scholar