Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-29T20:49:00.724Z Has data issue: false hasContentIssue false

On the strong stability of ergodic iterations

Published online by Cambridge University Press:  05 November 2024

László Györfi*
Affiliation:
Budapest University of Technology and Economics
Attila Lovas*
Affiliation:
HUN-REN Alfréd Rényi Institute of Mathematics and Budapest University of Technology and Economics
Miklós Rásonyi*
Affiliation:
HUN-REN Alfréd Rényi Institute of Mathematics
*
*Postal address: Department of Computer Science and Information Theory, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary. Email: [email protected]
**Postal address: Department of Analysis and Operations Research, Faculty of Natural Sciences, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary. Email: [email protected]
***Postal address: HUN-REN Alfréd Rényi Institute of Mathematics, Reáltanoda street 13-15, H-1053, Budapest. Email: [email protected]

Abstract

We revisit processes generated by iterated random functions driven by a stationary and ergodic sequence. Such a process is called strongly stable if a random initialization exists for which the process is stationary and ergodic, and for any other initialization the difference of the two processes converges to zero almost surely. Under some mild conditions on the corresponding recursive map, without any condition on the driving sequence we show the strong stability of iterations. Several applications are surveyed such as generalized autoregression and queuing. Furthermore, new results are deduced for Langevin-type iterations with dependent noise and for multitype branching processes.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Altman, E. and Fiems, D. (2012). Branching processes and their generalization applied to wireless networking. In Paradigms for Biologically-Inspired Autonomic Networks and Services. The BIONETS Project eBook, eds Eitan Altman, Paolo Dini and Daniele Miorandi. pp. 54–66.Google Scholar
Asmussen, S. (2003). Applied Probability and Queues. Springer, New York.Google Scholar
Baccelli, F. and Brémaud, P. (2003). Elements of Queueing Theory. Springer, New York.CrossRefGoogle Scholar
Barkhagen, M., Chau, N. H., Moulines, É., Rásonyi, M., Sabanis, S. and Zhang, Y. (2021). On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case. Bernoulli 27, 133.CrossRefGoogle Scholar
Bhattacharya, R. and Waymire, E. C. (2002). An approach to the existence of unique invariant probabilities for Markov processes. In Limit Theorems in Probability and Statistics Vol. I, eds I. Berkes, E. Csaki and M. Csorgo. Janos Bolyai Mathematical Society, Budapest, pp. 181–200.Google Scholar
Boon, M. A. A. (2012). A polling model with reneging at polling instants. Ann. Operat. Res. 198, 523.CrossRefGoogle Scholar
Boon, M. A. A., Adan, I. J. B. F. and Boxma, O. J. (2010). A polling model with multiple priority levels. Performance Evaluation 67, 468484.CrossRefGoogle Scholar
Borovkov, A. A. (1976). Stochastic Processes in Queueing Theory. Springer, New York.CrossRefGoogle Scholar
Borovkov, A. A. (1998). Ergodicity and Stability of Stochastic Processes. John Wiley, Chichester.Google Scholar
Borovkov, A. A. and Foss, S. G. (1993). Stochastically recursive sequences and their generalizations. Trudy Inst. Mat. SO RAN 20, 32103.Google Scholar
Bougerol, P. and Picard, N. (1992). Strict stationarity on generalized autoregressive processes, Ann. Prob. 20, 17141730.CrossRefGoogle Scholar
Brandt, A. (1986). The stochastic equation $Y_{n+ 1}= A_nY_n+ B_n$ with stationary coefficients. Adv. Appl. Prob. 18, 211220.Google Scholar
Brandt, A., Franken, P. and Lisek, B. (1990). Stationary Stochastic Models. John Wiley, New York.CrossRefGoogle Scholar
Chau, H. N., Moulines, É., Rásonyi, M., Sabanis, S. and Zhang, Y. (2021). On stochastic gradient Langevin dynamics with dependent data streams: The fully non-convex case. SIAM J. Math. Data Sci. 3, 959986.CrossRefGoogle Scholar
Dalalyan, A. S. (2017). Theoretical guarantees for approximate sampling from smooth and log-concave densities. J. R. Statist. Soc. B 79, 651676.CrossRefGoogle Scholar
Debaly, Z. M. and Truquet, L. (2021). Iterations of dependent random maps and exogeneity in nonlinear dynamics. Econometric Theory 37, 11351172.CrossRefGoogle Scholar
Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41, 4576.CrossRefGoogle Scholar
Durmus, A. and Moulines, É. (2019). High-dimensional Bayesian inference via the unadjusted Langevin algorithm. Bernoulli 25, 28542882.CrossRefGoogle Scholar
Elton, J. H. (1990). A multiplicative ergodic theorem for Lipschitz maps. Stoch. Process. Appl. 34, 3947.CrossRefGoogle Scholar
Foss, S. G. and Konstantopoulos, P. T. (2003). Extended renovation theory and limit theorems for stochastic ordered graphs. Markov Process. Relat. Fields 9, 413468.Google Scholar
Foss, S. G. and Tweedie, R. L. (1998). Perfect simulation and backward coupling. Stoch. Models 14, 187203.CrossRefGoogle Scholar
Fűrstenberg, H. and Kesten, H. (1960). Products of random matrices. Ann. Math. Statist. 31, 457469.CrossRefGoogle Scholar
Ganesh, A., O’Connell, N. and Wischick, D. (2004). Big Queues. Springer, Berlin.CrossRefGoogle Scholar
Gladstien, K. and Lange, K. (1978). Equilibrium distributions for deleterious genes in large stationary populations. Theoret. Pop. Biol. 14, 322328.CrossRefGoogle ScholarPubMed
Györfi, L. and Morvai, G. (2002). Queueing for ergodic arrivals and services. In Limit Theorems in Probability and Statistics, eds I. Berkes, E. Csáki, and M. Csörgö. Janos Bolyai Mathematical Society, Budapest, pp. 127–141.Google Scholar
Györfi, L. and Walk, H. (1996). On the averaged stochastic approximation for linear regression. SIAM J. Control Optimization 34, 3161.CrossRefGoogle Scholar
Györfi, L., Ispány, M., Kevei, P. and Pap, Gy. (2015). Asymptotic behavior of a multi-type nearly critical Galton–Watson processes with immigration. Prob. Theory Appl. 59, 590610.CrossRefGoogle Scholar
Györfi, L., Ispány, M., Pap, Gy. and Varga, K. (2007). Poisson limit of an inhomogeneous nearly critical INAR(1) model, Acta Sci. Math. (Szeged) 73, 803–829.Google Scholar
Haccou, P., Jagers, P. and Vatutin, V. A. (2007). Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press.Google Scholar
Hairer, M. (2005). Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Prob. 32, 703758.Google Scholar
Iosifescu, M. (2009). Iterated function sytems. A critical survey. Math. Reports 11, 181229.Google Scholar
Kaplan, N. (1973). The multitype Galton–Watson process with immigration. Ann. Prob. 1, 947953.CrossRefGoogle Scholar
Kevei, P. and Wiandt, P. (2021). Moments of the stationary distribution of subcritical multitype Galton–Watson processes with immigration. Statist. Prob. Lett. 173, 109067.CrossRefGoogle Scholar
Lange, K. and Fan, R. (1997). Branching process models for mutant genes in nonstationary populations. Theoret. Pop. Biol. 51, 118133.CrossRefGoogle ScholarPubMed
Lindvall, T. (1992). Lectures on the Coupling Method. John Wiley, New York.Google Scholar
Lovas, A. and Rásonyi, M. (2021). Markov chains in random environment with applications in queueing theory and machine learning. Stoch. Process. Appl. 137, 294326.CrossRefGoogle Scholar
Loynes, R. M. (1962). The stability of a queue with non-independent inter-arrival and service times. Proc. Camb. Phil. Soc. 58, 497520.CrossRefGoogle Scholar
Mode, C. J. (1971). Multitype Branching Processes. Theory and Applications. Elsevier, New York.Google Scholar
Polyak, B. T. (1990). New stochastic approximation type procedures. Avtomat. Telemekh. 51, 98–107 (in Russian). Translated in Automat. Remote Control 51, 937–946.Google Scholar
Propp, J. and Wilson, D. (1996). Exact sampling with coupled Markov chains. Random Structures Algorithms 9, 223252.3.0.CO;2-O>CrossRefGoogle Scholar
Propp, J. and Wilson, D. (1998). How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27, 170217.CrossRefGoogle Scholar
Quine, M. P. (1970). The multi-type Galton–Watson process with immigration. J. Appl. Prob. 7, 411422.CrossRefGoogle Scholar
Quine, M. P. (1972). The multi-type Galton–Watson process with $\varrho$ near to 1. Adv. Appl. Prob. 4, 429452.CrossRefGoogle Scholar
Resing, J. A. C. (1993). Polling systems and multitype branching processes. Queueing Systems 13, 409426.CrossRefGoogle Scholar
Ruppert, D. (1988). Efficient estimations from a slowly convergent Robbins–Monro process. Tech. rep. 781, School of Operat. Res. and Ind. Eng., Cornell University, Ithaca, NY.Google Scholar
Ruppert, D. (1991). Stochastic approximation. In Handbook of Sequential Analysis, eds B. K. Ghosh and P. K. Sen. Marcel Dekker, New York, pp. 503–529.Google Scholar
Truquet, L. (2021). Ergodic properties of some Markov chains models in random environments. Preprint, arXiv:2108.06211.Google Scholar
Van der Mei, R. D. (2007). Towards a unifying theory on branching-type polling systems in heavy traffic. Queueing Systems 57, 2946.CrossRefGoogle Scholar
Varvenne, M. (2019). Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory. Bernoulli 25, 32343275.CrossRefGoogle Scholar
Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In Proc. 28th Int. Conf. Machine Learning, eds L. Getoor and T. Scheffer. ACM, New York, pp. 681–688.Google Scholar