Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-29T06:30:59.406Z Has data issue: false hasContentIssue false

Comparison of single-step methods for genomic prediction of age at first calving in dairy buffaloes

Published online by Cambridge University Press:  14 November 2024

Jessica Cristina Gonçalves dos Santos
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Francisco Ribeiro de Araújo Neto*
Affiliation:
Instituto Federal de Ciência e Tecnologia Goiano – IFGoiano, Rio Verde, Goiás
Gabriela Stefani Fernandez
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Daniel Jordan de Abreu Santos
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Felipe Pereira Cunha
Affiliation:
Instituto Federal de Ciência e Tecnologia Goiano – IFGoiano, Rio Verde, Goiás
Rusbel Raul Aspilcueta-Borquis
Affiliation:
Universidade Tecnológica Federal do Paraná – UFTPR, Dois Vizinhos, Paraná
Humberto Tonhati
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
*
Corresponding author: F. R. Araujo Neto; Email: [email protected]

Abstract

The age at first calving (AFC) is an important trait to be considered in breeding programmes of dairy buffaloes, where new approaches and technologies, such as genomic selection, are constantly applied. Thus, the objective of this study was to compare the predictive ability of different genomic single-step methods using AFC information from Murrah buffaloes. From a pedigree file containing 3320 buffaloes, 2247 cows had AFC records and 553 animals were genotyped. The following models were performed: pedigree-based BLUP (PBLUP), single-step GBLUP (ssGBLUP), weighted single-step GBLUP (WssGBLUP), and single-step Bayesian regression methods (ssBR-BayesA, BayesBπ, BayesCπ, Bayes-Lasso, and BayesRR). To compare the methodologies, the accuracy and dispersion of (G)EBVs were assessed using the LR method. Accuracy estimates for the genotyped animals ranged from 0.30 (PBLUP) to 0.39 (WssGBLUP). Predictions with the traditional model (PBLUP) were very dispersed from what was expected, while BayesCπ (0.99) and WssGBLUP (1.00) obtained the lowest dispersion. The results indicate that the use of genomic information can improve the genetic gain for AFC by increasing the accuracy and reducing inflation/deflation of predictions compared to the traditional pedigree-based model. In addition, among all genomic single-step models studied, WssGBLUP and single-step BayesA were the most advantageous methods to be used in the genomic evaluation of AFC of buffaloes from this population.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agudelo-Gomez, D, Pineda-Sierra, S and Cerón-Muñoz, MF (2015) Genetic evaluation of dual-purpose buffaloes (Bubalus bubalis) in Colombia using principal component analysis. PLoS One 10, e0132811.CrossRefGoogle ScholarPubMed
Aguilar, I, Misztal, I, Johnson, DL, Legarra, A, Tsuruta, S and Lawlor, TJ (2010) Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science 93, 743752. https://doi.org/10.3168/jds.2009-2730.CrossRefGoogle Scholar
Araujo Neto, FR, Takada, L, Santos, DJA, Aspilcueta-Borquis, RR, Cardoso, DF, Nascimento, AV, Leão, KM, Oliveira, HN and Tonhati, H (2020 a) Identification of genomic regions related to age at first calving and first calving interval in water buffalo using single-step GBLUP. Reproduction in Domestic Animals 55, 15651572. https://doi.org/10.1111/rda.13811.CrossRefGoogle ScholarPubMed
Araujo Neto, FR, Santos, DJA, Fernandes Júnior, GA, Aspilcueta-Borquis, RR, Nascimento, AVD, Seno, LO, Tonhati, H and Oliveira, HN (2020 b) Genome-wide association studies for growth traits in buffaloes using the single step genomic BLUP. Journal of Applied Genetics 61, 113115. doi: 10.1007/s13353-019-00528-5.CrossRefGoogle ScholarPubMed
Araujo Neto, FR, Santos, JCG, Silva Arce, CD, Borquis, RRA, Santos, DJA, Guimarães, KC, Nascimento, AV, Oliveira, HN and Tonhati, H (2022) Genomic study of the resilience of buffalo cows to a negative energy balance. Journal of Applied Genetics 63, 379388. doi: 10.1007/s13353-021-00680-x.CrossRefGoogle ScholarPubMed
Aspilcueta-Borquis, RR, Araujo Neto, FR, Santos, DJ, Hurtado-Lugo, NA, Silva, JA and Tonhati, H (2015) Multiple-trait genomic evaluation for milk yield and milk quality traits using genomic and phenotypic data in buffalo in Brazil. Genetics and Molecular Research 14, 1800918017. doi: 10.4238/2015.December.22.27.CrossRefGoogle ScholarPubMed
Aspilcueta-Borquis, RR, Seno, LO, Araujo Neto, FR, Santos, DJA, Hurtado-Lugo, NA and Tonhati, H (2022) Lifetime productivity: genetic study of longevity and its associations with economically important traits in dairy buffaloes. Livestock Science 259, 104900. https://doi.org/10.1016/j.livsci.2022.104900.CrossRefGoogle Scholar
Calus, MPL (2010) Genomic breeding value prediction: methods and procedures. Animal 4, 157164. https://doi.org/10.1017/S1751731109991352.CrossRefGoogle ScholarPubMed
Calus, MPL, Meuwissen, THE, De Roos, APW and Veerkamp, RF (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178, 553561. https://doi.org/10.1534/genetics.107.080838.CrossRefGoogle ScholarPubMed
Camargo, GMF, Aspilcueta-Borquis, RR, Fortes, MRS, Porto-Neto, R, Cardoso, DF, Santos, DJA, Lehnert, SA, Reverter, A, Moore, SS and Tonhati, H (2015) Prospecting major genes in dairy buffaloes. BMC Genomics 16, 872. https://doi.org/10.1186/s12864-015-1986-2.CrossRefGoogle ScholarPubMed
Campos, G, Hickey, JM, Pong-Wong, R, Daetwyler, HD and Calus, MPL (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193, 327345. https://doi.org/10.1534/genetics.112.143313.CrossRefGoogle ScholarPubMed
Cesarani, A, Garcia, A, Hidalgo, J, Degano, L, Vicario, D, Macciotta, NPP and Lourenco, D (2020) Genomic information allows for more accurate breeding values for milk ability in dual-purpose Italian Simmental cattle. Journal of Dairy Science 104, 57195727. https://doi.org/10.3168/jds.2020-19838.CrossRefGoogle Scholar
Cesarani, A, Biffani, S, Garcia, A, Lourenco, D, Bertolini, G, Neglia, G, Misztal, I and Macciotta, NPP (2021) Genomic investigation of milk production in Italian buffalo. Italian Journal of Animal Science 20, 539547. https://doi.org/10.1080/1828051X.2021.1902404.CrossRefGoogle Scholar
Christensen, OF, Madsen, P, Nielsen, B, Ostersen, T and Su, G (2012) Single-step methods for genomic evaluation in pigs. Animal 6, 15651571. https://doi.org/10.1017/S1751731112000742.CrossRefGoogle ScholarPubMed
Costa, RB, Irano, N, Diaz, IDPS, Takada, L, Hermisdorff, IC, Carvalheiro, R, Baldi, F, Oliveira, HN, Tonhati, H and Albuquerque, LG (2019) Prediction of genomic breeding values for reproductive traits in Nellore heifers. Theriogenology 125, 1217. https://doi.org/10.1016/j.theriogenology.2018.10.014.CrossRefGoogle ScholarPubMed
Fernandes, PB, Marques, KO, de Araujo Neto, FR, de Oliveira, DP, Hurtado-Lugo, NA, Aspilcueta-Borquis, RR and Tonhati, H (2016) Genetic-quantitative study of the first-service pregnancy probability of Murrah heifers. Reproduction in Domestic Animals 51, 428434.CrossRefGoogle ScholarPubMed
Fernando, RL, Dekkers, JC and Garrick, DJ (2014) A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses. Genetics Selection Evolution 46, 50. https://doi.org/https://doi.org/10.1186/1297-9686-46-50.CrossRefGoogle ScholarPubMed
Gao, H, Koivula, M, Jensen, J, Strandén, I, Madsen, P, Pitkänen, T, Aamand, GP and Mäntysaari, EA (2018) Short communication: genomic prediction using different single-step methods in the Finnish red dairy cattle population. Journal of Dairy Science 101, 1008210088. doi: 10.3168/jds.2018-14913.CrossRefGoogle ScholarPubMed
Habier, D, Fernando, RL, Kizilkaya, K and Garrick, DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12, 186. https://doi.org/10.1186/1471-2105-12-186.CrossRefGoogle ScholarPubMed
Herrera, JRV, Flores, EB, Duijvesteijn, N, Moghaddar, N and van der Werf, JH (2021) Accuracy of genomic prediction for milk production traits in Philippine dairy buffaloes. Frontiers in Genetics 12, 682576. doi: 10.3389/fgene.2021.682576.CrossRefGoogle ScholarPubMed
Iamartino, D, Nicolazzi, EL, Van Tassell, CP, Reecy, JM, Fritz-Waters, ER, Koltes, JE, Biffani, S, Sonstegard, TS, Schroeder, SG, Ajmone-Marsan, P, Negrini, R, Pasquariello, R, Ramelli, P, Coletta, A, Garcia, JF, Ali, A, Ramunno, L, Cosenza, G, Oliveira, DAA, Drummond, MG, Bastianetto, E, Davassi, A, Pirani, A, Brew, F and Williams, JL (2017) Design and validation of a 90K SNP genotyping assay for the water buffalo (Bubalus bubalis). PLoS One 12, e0185220. https://doi.org/10.1371/journal.pone.0185220.CrossRefGoogle ScholarPubMed
Lázaro, SF, Tonhati, H, Oliveira, HR, Silva, AA, Nascimento, AV, Santos, DJA, Stefani, G and Brito, LF (2021) Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. Journal of Dairy Science 104, 57685793. https://doi.org/10.3168/jds.2020-19534.CrossRefGoogle ScholarPubMed
Lee, J, Cheng, H, Garrick, D, Golden, B, Dekkers, J, Park, K, Lee, D and Fernando, R (2017) Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genetics Selection Evolution 49, 2. https://doi.org/10.1186/s12711-016-0279-9.CrossRefGoogle ScholarPubMed
Legarra, A and Reverter, A (2018) Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genetics Selection Evolution 50, 53. https://doi.org/10.1186/s12711-018-0426-6.CrossRefGoogle ScholarPubMed
Meuwissen, THE, Hayes, BJ and Goddard, ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829. doi: 10.1093/genetics/157.4.1819.CrossRefGoogle ScholarPubMed
Misztal, I, Tsuruta, S, Lourenço, D, Masuda, Y, Aguilar, I, Legarra, A and Vitezica, Z (2014) BLUPF90 family of programs. Disponível em: http://nce.ads.uga.edu/wiki/doku.php.Google Scholar
Misztal, I, Lourenco, D and Legarra, A (2020) Current status of genomic evaluation. Journal of Animal Science 98, skaa101. https://doi.org/10.1093/jas/skaa101.CrossRefGoogle ScholarPubMed
R Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Thiruvenkadan, AK, Panneerselvam, S and Murali, N (2015) Study on ages at first mating and calving of Murrah buffaloes in hot and humid climate of Tamil Nadu. India. Indian Journal of Animal Research 49, 591594.Google Scholar
Toghiani, S, Hay, E, Sumreddee, P, Geary, TW, Rekaya, R and Roberts, AJ (2017) Genomic prediction of continuous and binary fertility traits of females in a composite beef cattle breed. Journal of Animal Science 95, 47874795. doi: 10.2527/jas2017.1944.CrossRefGoogle Scholar
VanRaden, PM (2008) Efficient methods to compute genomic predictions. Journal Dairy Science 91, 44144423.CrossRefGoogle ScholarPubMed
Wang, H, Misztal, I, Aguilar, I, Legarra, A and Muir, W (2012) Genome-wide association mapping including phenotypes from relatives without genotypes. Genetics Research 94, 7383. doi: 10.1017/S0016672312000274.CrossRefGoogle ScholarPubMed
Yi, N and Xu, S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179, 10451055. doi: 10.1534/genetics.107.085589.CrossRefGoogle ScholarPubMed
Yin, L, Zhang, H, Li, X, Zhao, S and Liu, X (2022) Hibayes: an R package to fit individual-level, summary-level and single-step Bayesian regression models for genomic prediction and genome-wide association studies. bioRxiv. Accessed in December 2022. Available in: https://doi.org/10.1101/2022.02.12.480230.Google Scholar
Zhang, X, Lourenco, D, Aguilar, I, Legarra, A and Misztal, I (2016) Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Frontiers in Genetics 7, 151. https://doi.org/10.3389/fgene.2016.00151.CrossRefGoogle ScholarPubMed
Zhou, L, Mrode, R, Zhang, S, Zhang, Q, Li, B and Liu, JF (2018) Factors affecting GEBV accuracy with single-step Bayesian models. Heredity 120, 100109. doi: 10.1038/s41437-017-0010-9.CrossRefGoogle ScholarPubMed