Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-29T16:41:38.298Z Has data issue: false hasContentIssue false

Pulse splitting technique for low sidelobe time-modulated antenna array synthesis with harmonic suppression

Published online by Cambridge University Press:  18 December 2024

Tarek Sallam*
Affiliation:
School of Computer Science and Technology, Shandong Xiehe University, Jinan, China Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt
Ahmed M. Attiya
Affiliation:
Microwave Engineering Dept., Electronics Research Institute (ERI), Cairo, Egypt
*
Corresponding author: Tarek Sallam; Email: [email protected]

Abstract

In this paper, pulse splitting approach is proposed to simultaneously reduce the sidelobe level (SLL) of fundamental signal and maximum sideband levels (SBLs) of harmonic signals for time-modulated linear array (TMLA). This is achieved by controlling only the periodic switching time sequence of each element of the TMLA. In pulse splitting, the on–off switching sequence of each radiating element is characterized by multiple rectangular sub-pulses within the modulation period which increase the degrees of freedom in order to better synthesize the desired fundamental pattern with simultaneous suppression of harmonic or sideband radiation. A genetic algorithm is employed to optimize the switch-on and switch-off instants of each sub-pulse for each element for 16-element uniform amplitude, phase, and space linear antenna array. The simulation results reveal that the proposed method can achieve the desired patterns with very low SLL and SBLs compared with previous published results.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Sallam, T and Attiya, AM (2019) Different array synthesis techniques for planar antenna array. Applied Computational Electromagnetics Society Journal 34, 716723.Google Scholar
Sallam, T and Attiya, A (2020) Low sidelobe cosecant-squared pattern synthesis for large planar array using genetic algorithm. Progress In Electromagnetics Research M 93, 2334.CrossRefGoogle Scholar
Sallam, T and Attiya, A (2020) Low sidelobe wide nulling digital beamforming for large planar array using iterative FFT techniques. Progress In Electromagnetics Research M 90, 3746.CrossRefGoogle Scholar
Sallam, T and Attiya, A (2017) Sidelobe reduction and resolution enhancement by random perturbations in periodic antenna arrays. The 34th National Radio Science Conference (NRSC’17), Alexandria, Egypt, 4955.CrossRefGoogle Scholar
Elliott, RS (2003) Antenna Theory and Design, Revised edition. New Jersey: IEEE Press.CrossRefGoogle Scholar
Shanks, HE and Bickmore, RW (1959) Four-dimensional electromagnetic radiators. Canadian Journal of Physics 37, 263275.CrossRefGoogle Scholar
Haupt, RL (2017) Antenna arrays in the time domain: An introduction to timed arrays. IEEE Antennas and Propagation Magazine 59, 3341.CrossRefGoogle Scholar
Varma, DS, Ram, G and Kumar, GA (2023) Time-modulated arrays: A review. IETE Technical Review 40, 136151.CrossRefGoogle Scholar
Maneiro-Catoira, R, Brégains, J, García-Naya, JA and Castedo, L (2017) Time modulated arrays: From their origin to their utilization in wireless communication systems. Sensors 17, .CrossRefGoogle ScholarPubMed
Rocca, P, Yang, F, Poli, L and Yang, S (2019) Time-modulated array antennas – Theory, techniques, and applications. Journal of Electromagnetic Waves and Applications 33, 15031531.CrossRefGoogle Scholar
Kummer, W, Villeneuve, A, Fong, T and Terrio, F (1963) Ultra-low sidelobes from time-modulated arrays. IEEE Transactions on Antennas and Propagation 11, 633639.CrossRefGoogle Scholar
Bregains, JC, Fondevila-Gomez, J, Franceschetti, G and Ares, F (2008) Signal radiation and power losses of time-modulated arrays. IEEE Transactions on Antennas and Propagation 56, 17991804.CrossRefGoogle Scholar
Yang, S, Gan, YB and Tan, PK (2004) Evaluation of directivity and gain for time-modulated linear antenna arrays. Microwave and Optical Technology Letters 42, 167171.CrossRefGoogle Scholar
Yang, S, Gan, YE, Qing, A and Tan, PK (2005) Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Transactions on Antennas and Propagation 53, 23372339.CrossRefGoogle Scholar
Yang, S, Gan, YB and Qing, A (2002) Sideband suppression in time-modulated linear arrays by the differential evolution algorithm. IEEE Antennas and Wireless Propagation Letters 1, 173175.CrossRefGoogle Scholar
Poli, L, Rocca, P, Manica, L and Massa, A (2010) Handling sideband radiations in time-modulated arrays through particle swarm optimization. IEEE Transactions on Antennas and Propagation 58, 14081411.CrossRefGoogle Scholar
Fondevila, J, Bregains, JC, Ares, F and Moreno, E (2006) Application of time modulation in the synthesis of sum and difference patterns by using linear arrays. Microwave and Optical Technology Letters 48, 829832.CrossRefGoogle Scholar
Nakanishi, T, Kihira, K, Takahashi, T, Konishi, Y and Chiba, I (2013) Sideband suppression using switched phase distribution in time-modulated array antennas. 2013 IEEE International Symposium on phased array systems and technology, 521528.CrossRefGoogle Scholar
Li, G, Yang, S, Huang, M and Nie, Z (2010) Sidelobe suppression in time modulated linear arrays with unequal element spacing. Journal of Electromagnetic Waves and Applications 24, 775783.CrossRefGoogle Scholar
Poli, L, Rocca, P, Manica, L and Massa, A (2010) Pattern synthesis in time-modulated linear arrays through pulse shifting. IET Microwaves, Antennas & Propagation 4, 11571164.CrossRefGoogle Scholar
Aksoy, E and Afacan, E (2011) Sideband level suppression improvement via splitting pulses in time modulated arrays under static fundamental radiation. PIERS Proceedings, Suzhou, China, 364367.Google Scholar
Chakraborty, A, Ram, G and Mandal, D (2020) Optimal pulse shifting in timed antenna array for simultaneous reduction of sidelobe and sideband level. IEEE Access 8, 131063131075.CrossRefGoogle Scholar
Yang, S, Gan, YE, Qing, A and Tan, PK (2005) Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Transactions on Antennas and Propagation 53, 23372339.CrossRefGoogle Scholar
Zhu, Q, Yang, S, Zheng, L and Nie, Z (2012) Design of a low sidelobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps. IEEE Transactions on Antennas and Propagation 60, 44364439.CrossRefGoogle Scholar
Tong, Y and Tennant, A (2012) Sideband level suppression in time-modulated linear arrays using modified switching sequences and fixed bandwidth elements. IET Electronics Letters 48, 1011.CrossRefGoogle Scholar
Holland, JH (1992) Genetic algorithms. Scientific American 267, 6672CrossRefGoogle Scholar
Goldberg, DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. MA: Addison-Wesley.Google Scholar
Haupt, RL and Haupt, SE (2004) Practical Genetic Algorithms, 2nd edition. New York: John Wiley & Sons.Google Scholar
Haupt, RL and Werner, D (2007) Genetic Algorithms in Electromagnetics. New York: John Wiley & Sons.CrossRefGoogle Scholar
You, P, Liu, Y, Xu, KD, Zhu, C and Liu, QH (2017) Generalisation of genetic algorithm and fast Fourier transform for synthesising unequally spaced linear array shaped pattern including coupling effects. IET Microwaves, Antennas & Propagation 11, 827832.CrossRefGoogle Scholar
Boeringer, DW and Werner, DH (2004) Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Transactions on Antennas and Propagation 52, 771779.CrossRefGoogle Scholar
Ibarra, M, Panduro, MA, Andrade, ÁG and Reyna, A (2015) Design of sparse concentric rings array for LEO satellites. Journal of Electromagnetic Waves and Applications 29, 19832001.CrossRefGoogle Scholar
Reyna, A, Panduro, MA, Covarrubias, DH and Mendez, A (2012) Design of steerable concentric rings array for low side lobe level. Scientia Iranica 19, 727732.CrossRefGoogle Scholar
Zhu, Q, Yang, S, Yao, R and Nie, Z (2012) Gain improvement in time-modulated linear arrays using SPDT switches. IEEE Antennas and Wireless Propagation Letters 11, 994997.Google Scholar
Yang, J, Li, W and Shi, X (2014) Phase modulation technique for four-dimensional arrays. IEEE Antennas and Wireless Propagation Letters 13, 13931396.CrossRefGoogle Scholar
Ni, G, He, C, Chen, J, Liu, Y and Jin, R (2020) Low sideband radiation beam scanning at carrier frequency for time-modulated array by non-uniform period modulation. IEEE Transactions on Antennas and Propagation 68, 36953704.CrossRefGoogle Scholar