No CrossRef data available.
Design of a flexible ultra-wideband antenna with six band-notched characteristics for wearable applications
Published online by Cambridge University Press: 03 March 2025
Abstract
This paper proposes a compact coplanar waveguide-fed slot antenna for ultra-wideband wearable applications, featuring six notch bands. The antenna utilizes a flexible liquid crystal polymer substrate with a thickness of 0.1 mm. The antenna achieves six band-notched characteristics by incorporating a split concentric ring etched on the radiating patch and L-shaped branches loaded on the ground plane. The proposed flexible antenna has dimensions of 30 × 30 mm2(0.65λ0*0.65λ0,λ0 is the free space wavelength at 6.5 GHz.). Measurement results show an impedance bandwidth ranging from 2.37 to 13.7 GHz and a fractional bandwidth of 134%. The notch bands cover 2.9–3.77 GHz for WiMAX applications, 4.14–4.9 GHz for the ARN band, 5.09–5.55 GHz for the WLAN downlink band, 5.86–6.46 GHz for the C-band uplink band, 6.66–7.39 GHz for the C-band/INSAT/super-extended band, and 7.93–8.43 GHz for ITU-8 GHz. The maximum gain in the operating band is 6.5 dBi. The performances of the flexible antenna are analyzed under bending conditions. The ANSYS HFSS electromagnetic simulator was used for the design and simulation of the proposed antenna. The flexible antenna is suitable for wearable applications.
- Type
- Research Paper
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press in association with The European Microwave Association.