Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-29T23:52:33.273Z Has data issue: false hasContentIssue false

Beamforming steering implementation using substrate-integrated waveguide Butler matrix and slotted array antenna for 5G n257 band

Published online by Cambridge University Press:  19 December 2024

Ming-An Chung*
Affiliation:
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
Ming-Chang Lee
Affiliation:
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
Chia-Chun Hsu
Affiliation:
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
Chia-Wei Lin
Affiliation:
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
*
Corresponding author: Ming-An Chung; Email: [email protected]

Abstract

This paper introduces a method to realize beam switching by using a substrate-integrated waveguide (SIW) Butler matrix combined with a slot array antenna. The Butler matrix consists of two hybrid couplers, two crossovers, two −45-degree phase shifters, and two 0-degree phase shifters. The slot array antenna is a 4 × 2 array. The operating frequency band of the slot array antenna, where the reflection coefficient is below −10 dB, is 26.5–31.5 GHz. The measured beamforming angles from input port 1 to input Port 4 of the Butler matrix are +46, −16, +15, and −50°, respectively. The corresponding antenna gains from input Port 1 to input Port 4 are 11.57 dB, 14.284 dB, 10.94 dB, and 12.864 dB, respectively. The dimensions of the Butler matrix and the slot array antenna are 56.8 mm × 21.2 mm × 0.254 mm. The dimensions of the SIW transmission channels between the Butler matrix and input Ports 1– 4 are 16.9 mm × 34 mm × 0.254 mm.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chi, L, Weng, Z, Qi, Y and Drewniak, JL (2020) A 60 GHz PCB wideband antenna-in-package for 5G/6G applications. IEEE Antennas and Wireless Propagation Letters 19(11), 19681972. doi:10.1109/LAWP.2020.3006873CrossRefGoogle Scholar
Brandão, T and Cerqueira, A (2022) Tri-band antenna array for FR1/FR2 5G NR base stations. IEEE Antennas and Wireless Propagation Letters.CrossRefGoogle Scholar
Tang, Y, Dananjayan, S, Hou, C, Guo, Q, Luo, S and He, Y (2021) A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture 180, . doi:10.1016/j.compag.2020.105895CrossRefGoogle Scholar
Shallah, AB, Zubir, F, Rahim, MKA, Majid, HA, Sheikh, UU, Murad, NA and Yusoff, Z (2022) Recent developments of Butler matrix from components design evolution to system integration for 5G beamforming applications: A survey. IEEE Access 10, 8843488456. doi:10.1109/ACCESS.2022.3199739CrossRefGoogle Scholar
Acri, G, Corsi, J, Podevin, F, Pistono, E, Ferrari, P and Boccia, L (2022) A sensitivity study of Butler matrices: Application to an SIW extended beam matrix at 28 GHz. IEEE Access 10, 101972101987. doi:10.1109/ACCESS.2022.3208055CrossRefGoogle Scholar
Shariff, BP, Ali, T, Mane, PR and Kumar, P (2022) Array antennas for mmWave applications: A comprehensive review. IEEE Access.CrossRefGoogle Scholar
Xu, Z, Shen, Y, Xue, S and Hu, S (2022) Fully planar 2-D multibeam millimeter-wave antenna with via-based phase shifters. IEEE Antennas and Wireless Propagation Letters 21(11), 22342238. doi:10.1109/LAWP.2022.3195545CrossRefGoogle Scholar
Md Jizat, N, Yusoff, Z, Mohd Marzuki, AS, Zainudin, N and Yamada, Y (2022) Insertion loss and phase compensation using a circular slot via-hole in a compact 5G millimeter wave (mmWave) Butler matrix at 28 GHz. Sensors 22(5), . doi:10.3390/s22051850CrossRefGoogle Scholar
Vallappil, AK, Rahim, MKA, Khawaja, BA, Murad, NA and Mustapha, MG (2020) Butler matrix based beamforming networks for phased array antenna systems: A comprehensive review and future directions for 5G applications. IEEE Access 9, 39703987. doi:10.1109/ACCESS.2020.3047696CrossRefGoogle Scholar
Wang, J, Wu, Y, Wang, W and Ma, L (2022) Wideband mm-wave high-gain multibeam antenna array fed by 4× 4 groove gap waveguide Butler matrix with modified crossover. AEU-International Journal of Electronics and Communications 154, .Google Scholar
Pezhman, M, Heidari, A and Ghafoorzadeh-Yazdi, A (2020) Compact three-beam antenna based on SIW multi-aperture coupler for 5G applications. AEU-International Journal of Electronics and Communications 123, .Google Scholar
Lee, S, Lee, Y and Shin, H (2021) A 28-GHz switched-beam antenna with integrated Butler matrix and switch for 5G applications. Sensors 21(15), . doi:10.3390/s21155128Google ScholarPubMed
Pezhman, MM, Heidari, -A-A and Ghafoorzadeh-Yazdi, A (2021) A compact 4× 4 SIW beamforming network for 5G applications. AEU-International Journal of Electronics and Communications 135, .Google Scholar
Pezhman, MM, Heidari, -A-A and Ghafoorzadeh-Yazdi, A (2022) A novel single layer SIW 6× 6 beamforming network for 5G applications. AEU-International Journal of Electronics and Communications 155, .Google Scholar
Najafabadi, AMA, Ghani, FA and Tekin, I (2022) Low-cost multibeam millimeter-wave array antennas for 5G mobile applications. IEEE Transactions on Vehicular Technology 71(12), 1245012460. doi:10.1109/TVT.2022.3198878CrossRefGoogle Scholar
Wang, D, Polat, E, Tesmer, H, Maune, H and Jakoby, R (2022) Switched and steered beam end-fire antenna array fed by wideband via-less Butler matrix and tunable phase shifters based on liquid crystal technology. IEEE Transactions on Antennas and Propagation 70(7), 53835392. doi:10.1109/TAP.2022.3142334CrossRefGoogle Scholar
Cao, D, Li, Y and Wang, J (2023) Ka-band multibeam patch antenna array fed by spoof-surface-plasmon-polariton Butler matrix. IEEE Transactions on Antennas and Propagation 71(3), 23852395. doi:10.1109/TAP.2023.3240829CrossRefGoogle Scholar
Van Messem, L, Moerman, A, Caytan, O, de Paula, IL, Hoflack, B, Stroobandt, B, Lemey, S, Moeneclaey, M and Rogier, H (2022) A 4× 4 millimeterwave-frequency Butler matrix in grounded co-planar waveguide technology for compact integration with 5G antenna arrays. IEEE Transactions on Microwave Theory & Techniques 71(1), 122134. doi:10.1109/TMTT.2022.3178073CrossRefGoogle Scholar
Qin, C, Chen, F-C and Xiang, K-R (2021) A 5× 8 Butler matrix based on substrate integrated waveguide technology for millimeter-wave multibeam application. IEEE Antennas and Wireless Propagation Letters 20(7), 12921296. doi:10.1109/LAWP.2021.3078274CrossRefGoogle Scholar
Liu, Z-P, Chen, F-C and Qin, C (2022) A 7× 8 Butler matrix-fed multibeam antenna based on substrate integrated waveguide technology. In IEEE Antennas and Wireless Propagation Letters.CrossRefGoogle Scholar
Han, K, Wei, G and Wang, M (2022) Design of millimeter wave dual‐polarized multibeam antenna array with a boresight beam. International Journal of RF and Microwave Computer-Aided Engineering 32(12), . doi:10.1002/mmce.23455CrossRefGoogle Scholar
Kong, W, Hu, Y, Li, J, Zhang, L and Hong, W (2022) 2-D orthogonal multibeam antenna arrays for 5G millimeter-wave applications. IEEE Transactions on Microwave Theory & Techniques 70(5), 28152824. doi:10.1109/TMTT.2022.3162113CrossRefGoogle Scholar
Yang, Q-L, Ban, Y-L, Lian, J-W, Yu, Z-F and Wu, B (2016) SIW Butler matrix with modified hybrid coupler for slot antenna array. IEEE Access 4, 95619569. doi:10.1109/ACCESS.2016.2645938CrossRefGoogle Scholar
Wang, Z, Dai, X and Sun, W (2020) Tri-beam slot antenna array based on substrate integrated waveguide (SIW) technology. International Journal of Microwave and Wireless Technologies 12(3), 246251. doi:10.1017/S1759078719001260CrossRefGoogle Scholar
Mohan, M, Hong, MKC, Alphones, A and Liu, A (2020) A 30 GHz SIW based 4×4 Butler matrix. In: 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE.CrossRefGoogle Scholar
Tsao, Y-F, Hsu, H-T and Desai, A (2023) High power handling GaAs SP4T switch-based beam-switching planar antenna module for 5G new-radio FR2 applications. AEU-International Journal of Electronics and Communications 159, .Google Scholar
Desai, A, Tsao, Y-F and Hsu, H-T (2023) High gain substrate integrated waveguide antenna with enhanced bandwidth for millimeter-wave wireless network applications. Wireless Networks 29(5), 22512260. doi:10.1007/s11276-023-03296-7CrossRefGoogle Scholar