No CrossRef data available.
Article contents
Accepted manuscript
A systematic review of assessing climate change risks on species and ecosystems: bibliometric overview, concepts, approaches, and trends
Part of:
Polycrisis in the Anthropocene
Published online by Cambridge University Press: 18 February 2025
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

- Type
- Review Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- Copyright © The Author(s), 2025. Published by Cambridge University Press
References
Albrich, K., Rammer, W., & Seidl, R. (2020). Climate change causes critical transitions and irreversible alterations of mountain forests. Global Change Biology, 26(7), 4013–4027.Google Scholar
Antão, L. H., Weigel, B., Strona, G., Hällfors, M., Kaarlejärvi, E., Dallas, T., Csergő, A. M., MacLean, H. J., Saccheri, I. J., Rolshausen, G., Pearce-Higgins, J. W., & Laine, A. L. (2022). Climate change reshuffles northern species within their niches. Nature Climate Change, 12(6), 587–592.Google Scholar
Arneth, A., Shin, Y. J., Leadley, P., Rondinini, C., Bukvareva, E., Kolb, M., Midgley, G. F., Oberdorff, T., Palomo, M. G., & Saito, O. (2020). Post-2020 biodiversity targets need to embrace climate change. Proceedings of the National Academy of Sciences of the United States of America, 117(49), 30882–30891.Google Scholar
Bagchi, R., Crosby, M., Huntley, B., Hole, D. G., Butchart, S. H. M., Collingham, Y., Kalra, M., Rajkumar, J., Rahmani, A., Pandey, M., Gurung, H., Trai, L. T., Quang, N. V., & Willis, S. G. (2013). Evaluating the effectiveness of conservation site networks under climate change: Accounting for uncertainty. Global Change Biology, 19, 1236–1248.Google Scholar
Balmford, A. (1996). Extinction filters and current resilience: The significance of past selection pressures for conservation biology. Trends in Ecology and Evolution, 11, 193–196.Google Scholar
Bates, A. E., Pecl, G. T., Frusher, S., Hobday, A. J., Wernberg, T., Smale, D. A., Sunday, J. M., Hill, N. A., Dulvy, N. K., Colwell, R. K., Holbrook, N. J., Fulton, E. A., Slaughter, E. L., & Watson, R. A. (2014). Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 26, 27–38.Google Scholar
Bergstrom, D. M., Wienecke, B. C., van den Hoff, J., Hughes, L., Lindenmayer, D. B., Ainsworth, T. D., Baker, C. M., Bland, L., Bowman, D. M. J. S., Brooks, S. T., Canadell, J. G., Constable, A. J., DellaSala, D. A., Mackey, B., Manica, A., Possingham, H. P., Schroeter, S., Terauds, A., & Shaw, J. D. (2021). Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 27(9), 1692–1703.Google Scholar
Bertrand, R., Riofrío-Dillon, G., Lenoir, J., Drapier, J., De Ruffray, P., Gégout, J. C., & Loreau, M. (2016). Ecological constraints increase the climatic debt in forests. Nature Communications, 7, 12643.Google Scholar
Brawn, J., Benson, T., Stager, M., Sly, D., & Tarwater, N. E. C. (2017). Impacts of changing rainfall regime on the demography of tropical birds. Nature Climate Change, 7, 133–136.Google Scholar
Cabral, J. S., Mendoza-Ponce, A., Pinto, A., Oberpriller, J., Mimet, A., Kieslinger, J., Berger, T., Blechschmidt, J., Brönner, M., Classen, A., Fallert, S., Hartig, F., Hof, C., Hoffmann, M., Knoke, T., Krause, A., Lewerentz, A., Pohle, P., Raeder, U., … Zurell, D. (2023). The road to integrate climate change projections with regional land-use biodiversity models. People and Nature, 1–26.Google Scholar
Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Ryu, H. Y., Sbeglia, G. C., Spagnolo, F., Waldron, J. B., Warsi, O., & Wiens, J. J. (2013). How does climate change cause extinction? Proceedings of the Royal Society of London, 280, 20121890.Google Scholar
Camac, J. S., Umbers, K. D. L., Morgan, J. W., Geange, S. R., Hanea, A., Slatyer, R. A., McDougall, K. L., Venn, S. E., Vesk, P. A., Hoffmann, A. A., & Nicotra, A. B. (2021). Predicting species and community responses to global change using structured expert judgement: An Australian mountain ecosystems case study. Global Change Biology, 27(18), 4420–4434.Google Scholar
Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., Orme, C. D. L., & Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239–1241.Google Scholar
Carvalho, J. S., Graham, B., Rebelo, H., Bocksberger, G., Meyer, C. F. J., Wich, S., & Kühl, H. S. (2019). A global risk assessment of primates under climate and land use/cover scenarios. Global Change Biology, 25(9), 3163–3178.Google Scholar
Carvalho, S. B., Brito, J. C., Crespo, E. G., Watts, M. E., & Possingham, H. P. (2011). Conservation planning under climate change: Toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biological Conservation, 144(7), 2020–2030.Google Scholar
Carvalho, S. B., Brito, J. C., Crespo, E. J., & Possingham, H. P. (2010). From climate change predictions to actions – Conserving vulnerable animal groups in hotspots at a regional scale. Global Change Biology, 16(12), 3257–3270.Google Scholar
Chapin, F. S. III, Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P., Beringer, J., Chapman, W. L., Epstein, H. E., Hinzman, L. D., Jia, G., Ping, C. L., Tape, K. D., Thompson, C. D. C., Walker, D. A., & Welker, J. M. (2005). Role of land-surface changes in Arctic summer warming. Science, 310(5748), 657–660.Google Scholar
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science, 57, 359–377.Google Scholar
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026.Google Scholar
Chen, Y., Jiang, Z., Fan, P., Ericson, P. G. P., Song, G., Luo, X., Lei, F., & Qu, Y. (2022). The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nature Communications, 13(1), 1–15.Google Scholar
Civantos, E., Thuiller, W., Maiorano, L., Guisan, A., & Araújo, M. B. (2012). Potential impacts of climate change on ecosystem services in Europe: The case of pest control by vertebrates. Bioscience, 62, 658–666.Google Scholar
Clusella-Trullas, S., Blackburn, T. M., & Chown, S. L. (2011). Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. American Naturalist, 177, 738–751.Google Scholar
Cozzoli, F., Shokri, M., da Conceição, T. G., Herman, P. M., Hu, Z., Soissons, L. M., Van Dalen, J., Ysebaert, T., & Bouma, T. J. (2021). Modelling spatial and temporal patterns in bioturbator effects on sediment resuspension: A biophysical metabolic approach. Science of the Total Environment, 792, 148215.Google Scholar
Crossman, N. D., Bryan, B. A., & Summers, D. M. (2012). Identifying priority areas for reducing species vulnerability to climate change. Diversity and Distributions, 18, 60–72.Google Scholar
Curd, A., Chevalier, M., Vasquez, M., Boyé, A., Firth, L. B., Marzloff, M. P., Bricheno, L. M., Burrows, M. T., Bush, L. E., Cordier, C., Davies, A. J., Green, J. A. M., Hawkins, S. J., Lima, F. P., Meneghesso, C., Mieszkowska, N., Seabra, R., & Dubois, S. F. (2023). Applying landscape metrics to species distribution model predictions to characterize internal range structure and associated changes. Global Change Biology, 29(3), 631–647.Google Scholar
Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science, 292, 673–679.Google Scholar
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668–6672.Google Scholar
Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., Herrando, S., Julliard, R., Kuussaari, M., Lindström, Å, Reif, J., Roy, D. B., Schweiger, O., Settele, J., Stefanescu, C., Van Strien, A., Van Turnhout, C., Vermouzek, Z., WallisDeVries, M., … Jiguet, F. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121–124.Google Scholar
DeWeber, J. T., & Wagner, T. (2018). Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection. Global Change Biology, 24(6), 2735–2748.Google Scholar
Dorado-Liñán, I., Piovesan, G., Martínez-Sancho, E., Gea-Izquierdo, G., Zang, C., Cañellas, I., Castagneri, D., Di Filippo, A., Gutiérrez, E., Ewald, J., Fernández-de-Uña, L., Hornstein, D., Jantsch, M. C., Levanič, T., Mellert, K. H., Vacchiano, G., Zlatanov, T., & Menzel, A. (2019). Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Global Change Biology, 25(4), 1296–1314.Google Scholar
Du, Z., Yu, L., Chen, X., Li, X., Peng, D., Zheng, S., Hao, P., Yang, J., Guo, H., & Gong, P. (2023). An operational assessment framework for near real-time cropland dynamics: Toward sustainable cropland use in mid-spine belt of beautiful China. Journal of Remote Sensing, 3, 0065.Google Scholar
Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnböck, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J.-C., Psomas, A., Schmatz, D. R., Silc, U., … Hülber, K. (2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2, 619–622.Google Scholar
Eigenbrod, F., Gonzalez, P., Dash, J., & Steyl, I. (2015). Vulnerability of ecosystems to climate change moderated by habitat intactness. Global Change Biology, 21(1), 275–286.Google Scholar
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Tittensor, D. P., Byrnes, J. E., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., & Pandolfi, J. M. (2015). Paleontological baselines for evaluating extinction risk in the modern oceans. Science, 348, 567–570.Google Scholar
Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., DeVantier, L., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O'Hanlon, S. E., Garnett, S. T., Şekercioğlu, Ç. H., & Mace, G. M. (2013). Identifying the world's most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE, 8, e65427.Google Scholar
Fordham, D. A., Watts, M. J., Delean, S., Brook, B. W., Heard, L. M. B., & Bull, C. M. (2012). Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence of an endangered lizard. Global Change Biology, 18(9), 2743–2755.Google Scholar
Glazier, D. S., & Gjoni, V. (2024). Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philosophical Transactions of the Royal Society B, 379(1896), 20220489.Google Scholar
Grunst, M. L., Grunst, A. S., Grémillet, D., & Fort, J. (2023). Combined threats of climate change and contaminant exposure through the lens of bioenergetics. Global Change Biology, 29, 5139–5168.Google Scholar
Guisan, A., & Rahbek, C. (2011). SESAM – A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433–1444.Google Scholar
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009.Google Scholar
Harrison, P. A., Berry, P. M., Butt, N., & New, M. (2006). Modelling climate change impacts on species’ distributions at the European scale: Implications for conservation policy. Environmental Science & Policy, 9(2), 116–128.Google Scholar
Hua, T., Zhao, W., Cherubini, F., Hu, X., & Pereira, P. (2021). Sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau of China. Landscape Ecology, 36(12), 3451–3471.Google Scholar
Hulina, J., Bocetti, C., Campa, H. III, Hull, V., Yang, W., & Liu, J. (2017). Telecoupling framework for research on migratory species in the Anthropocene. Elementa: Science of the Anthropocene, 5, 5.Google Scholar
Hunter, C. M., Caswell, H., Runge, M. C., Regehr, E. V., Amstrup, S. C., & Stirling, I. (2010). Climate change threatens polar bear populations: A stochastic demographic analysis. Ecology, 91(10), 2883–2897.Google Scholar
IPBES. (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science policy platform on biodiversity and ecosystem services. IPBES.Google Scholar
IPCC. (2014). Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.Google Scholar
IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Cambridge University Press.Google Scholar
Jackson, S. T., & Sax, D. F. (2010). Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends in Ecology and Evolution, 25, 153–160.Google Scholar
Jansson, R. (2009). Extinction risks from climate change: Macroecological and historical insights. F1000 Biology Reports, 1, 44.Google Scholar
Jenouvrier, S., Caswell, H., Barbraud, C., Holland, M., Strœve, J., & Weimerskirch, H. (2009). Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1844–1847.Google Scholar
Jezkova, T., Olah-Hemmings, V., & Riddle, B. R. (2011). Niche shifting in response to warming climate after the last glacial maximum: Inference from genetic data and niche assessments in the chisel-toothed kangaroo rat (Dipodomys microps). Global Change Biology, 17(11), 3486–3502.Google Scholar
Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O'Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., Carbone, C., Connolly, C., Cutts, M. J., Foster, J. K., Grenyer, R., Habib, M., Plaster, C. A., Price, S. A., Rigby, E. A., Rist, J., … Purvis, A. (2009). PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648.Google Scholar
Kearney, M., & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12(4), 334–350.Google Scholar
Kellermann, V., Overgaard, J., Hoffmann, A. A., Fløjgaard, C., Svenning, J. C., & Loeschcke, V. (2012). Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16228–16233.Google Scholar
Kong, L., Xu, W., Xiao, Y., Pimm, S. L., Shi, H., & Ouyang, Z. (2021). Spatial models of giant pandas under current and future conditions reveal extinction risks. Nature Ecology and Evolution, 5(9), 1309–1316.Google Scholar
Leclerc, C., Courchamp, F., & Bellard, C. (2020a). Future climate change vulnerability of endemic island mammals. Nature Communications, 11(1), 1–9.Google Scholar
Leclerc, C., Villéger, S., Marino, C., & Bellard, C. (2020b). Global changes threaten functional and taxonomic diversity of insular species worldwide. Diversity and Distributions, 26(4), 402–414.Google Scholar
Lee, C. K. F., Duncan, C., Owen, H. J. F., & Pettorelli, N. (2018). A new framework to assess relative ecosystem vulnerability to climate change. Conservation Letters, 11(2), e12372.Google Scholar
Liu, J. (2014). Forest sustainability in China and implications for a telecoupled world. Asia & the Pacific Policy Studies, 1(1), 230–250.Google Scholar
Liu, J., Hull, V., Batistella, M., DeFries, R., Dietz, T., Fu, F., Hertel, T. W., Izaurralde, R. C., Lambin, E. F., Li, S., Martinelli, L. A., McConnell, W. J., Moran, E. F., Naylor, R., Ouyang, Z., Polenske, K. R., Reenberg, A., Rocha, G. D. M., Simmons, C. S., … Zhu, C. (2013). Framing sustainability in a telecoupled world. Ecology & Society, 18(2), 26.Google Scholar
López-Hoffman, L., Diffendorfer, J., Wiederholt, R., Bagstad, K. J., Thogmartin, W. E., McCracken, G., Medellin, R. L., Russell, A., & Semmens, D. J. (2017). Operationalizing the telecoupling framework for migratory species using the spatial subsidies approach to examine ecosystem services provided by Mexican free-tailed bats. Ecology & Society, 22(4), 23.Google Scholar
Maclean, I. M. D., & Wilson, R. J. (2011). Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12337–12342.Google Scholar
Mahony, C. R., Cannon, A. J., Wang, T., & Aitken, S. N. (2017). A closer look at novel climates: New methods and insights at continental to landscape scales. Global Change Biology, 23(9), 3934–3955.Google Scholar
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L., & Hannah, L. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20(2), 538–548.Google Scholar
McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A., Espirito-Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D., Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., … Xu, X. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219(3), 851–869.Google Scholar
Moat, J., Gole, T. W., & Davis, A. P. (2019). Least concern to endangered: Applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global Change Biology, 25(2), 390–403.Google Scholar
Moilanen, A., Lehtinen, P., Kohonen, I., Jalkanen, J., Virtanen, E. A., & Kujala, H. (2022). Novel methods for spatial prioritization with applications in conservation, land use planning and ecological impact avoidance. Methods in Ecology and Evolution, 13(5), 1062–1072.Google Scholar
Mok, H. F., Arndt, S. K., & Nitschke, C. R. (2012). Modelling the potential impact of climate variability and change on species regeneration potential in the temperate forests of south-eastern Australia. Global Change Biology, 18(3), 1053–1072.Google Scholar
Monahan, W. B. (2009). A mechanistic niche model for measuring species’ distributional responses to seasonal temperature gradients. PLoS ONE, 4, e7921.Google Scholar
Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L., & Reich, P. B. (2020). Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 117(19), 10397–10405.Google Scholar
Newton, A. C., Britton, R., Davies, K., Diaz, A., Franklin, D. J., Herbert, R. J. H., Hill, R. A., Hodder, K., Jones, G., Korstjens, A. H., Lamb, A., Olley, J., Pinder, A. C., Roberts, C. G., & Stafford, R. (2021). Operationalising the concept of ecosystem collapse for conservation practice. Biological Conservation, 264, 109366.Google Scholar
Ni, H., Yu, L., Gong, P., Li, X., & Zhao, J. (2023). Urban renewal mapping: A case study in Beijing from 2000 to 2020. Journal of Remote Sensing, 3, 0072.Google Scholar
Nolan, C., Overpeck, J. T., Allen, J. R. M., Anderson, P. M., Betancourt, J. L., Binney, H. A., Brewer, S., Bush, M. B., Chase, B. M., Cheddadi, R., Djamali, M., Dodson, J., Edwards, M. E., Gosling, W. D., Haberle, S., Hotchkiss, S. C., Huntley, B., Ivory, S. J., Kershaw, A. P., … Jackson, S. T. (2018). Past and future global transformation of terrestrial ecosystems under climate change. Science, 923, 920–923.Google Scholar
Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akçakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann, A. A., Midgley, G. F., Pearce-Kelly, P., Pearson, R. G., Williams, S. E., … Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5(3), 215–225.Google Scholar
Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola, F. M., & Rondinini, C. (2017). Species’ traits influenced their response to recent climate change. Nature Climate Change, 7(3), 205–208.Google Scholar
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906.Google Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.Google Scholar
Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T., Knight, S. J., & Goetz, S. J. (2013). Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3(7), 673–677.Google Scholar
Pearson, R. G., Stanton, J. C., Shoemaker, K. T., Aiello-Lammens, M. E., Ersts, P. J., Horning, N., Fordham, D. A., Raxworthy, C. J., Ryu, H. Y., McNees, J., & Akçakaya, H. R. (2014). Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change, 4(3), 217–221.Google Scholar
Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T. P., & Lees, D. C. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33(10), 1704–1711.Google Scholar
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., … Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214.Google Scholar
Perry, T. O., & Wu, W. C. (1960). Genetic variation in the winter chilling requirement for date of dormancy break for Acer rubrum. Ecology, 41, 790–794.Google Scholar
Pettorelli, N., Laurance, W. F., O'Brien, T. G., Wegmann, M., Nagendra, H., & Turner, W. (2014). Satellite remote sensing for applied ecologists: Opportunities and challenges. Journal of Applied Ecology, 51(4), 839–848.Google Scholar
Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tóth, A. B., & McGuire, J. L. (2021). Mammal species occupy different climates following the expansion of human impacts. Proceedings of the National Academy of Sciences of the United States of America, 118(2), e1922859118.Google Scholar
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., & Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919–925.Google Scholar
Poulter, B., Hattermann, F., Hawkins, E., Zaehle, S., Sitch, S., Restrepo-Coupe, N., Heyder, U., & Cramer, W. (2010). Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters. Global Change Biology, 16(9), 2476–2495.Google Scholar
Radchuk, V., Turlure, C., & Schtickzelle, N. (2013). Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology, 82, 275–285.Google Scholar
Riddell, E. A., Odom, J. P., Damm, J. D., & Sears, M. W. (2018). Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Science Advances, 4(7), 1–10.Google Scholar
Rowland, E. L., Davison, J. E., & Graumlich, L. J. (2011). Approaches to evaluating climate change impacts on species: A guide to initiating the adaptation planning process. Journal of Environmental Management, 47, 322–337.Google Scholar
Rumpf, S. B., Hülber, K., Wessely, J., Willner, W., Moser, D., Gattringer, A., Klonner, G., Zimmermann, N. E., & Dullinger, S. (2019). Extinction debts and colonization credits of non-forest plants in the European Alps. Nature Communications, 10(1), 4293.Google Scholar
Sandin, L., Schmidt-Kloiber, A., Svenning, J.-C., Jeppesen, E., & Friberg, N. (2014). A trait-based approach to assess climate change sensitivity of freshwater invertebrates across Swedish ecoregions. Current Zoology, 60(2), 221–232.Google Scholar
Schmidt-Traub, G., Locke, H., Gao, J., Ouyang, Z., Adams, J., Li, L., Sala, E., Shaw, M. R., Troëng, S., Xu, J., Zhu, C., Zou, C., Ma, T., & Wei, F. (2021). Integrating climate, biodiversity, and sustainable land-use strategies: Innovations from China. National Science Review, 8(7), nwaa139.Google Scholar
Schröter, M., Koellner, T., Alkemade, R., Arnhold, S., Bagstad, K. J., Erb, K.-H., Frank, K., Kastner, T., Kissinger, M., Liu, J., López-Hoffman, L., Maes, J., Marques, A., Martín-López, B., Meyer, C., Schulp, C. J. E., Thober, J., Wolff, S., & Bonn, A. (2018). Interregional flows of ecosystem services: Concepts, typology, and four cases. Ecosystem Services, 31, 231–241.Google Scholar
Sears, M. W., Angilletta, M. J. Jr., Schuler, M. S., Borchert, J., Dilliplane, K. F., Stegman, M., Rusch, T. W., & Mitchell, W. A. (2016). Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proceedings of the National Academy of Sciences of the United States of America, 113(38), 10595–10600.Google Scholar
Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593), 229–232.Google Scholar
Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 5(1), 61–66.Google Scholar
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402.Google Scholar
Shen, X., Liu, M., Hanson, J. O., Wang, J., Locke, H., Watson, J. E. M., Ellis, E. C., Li, S., & Ma, K. (2023). Countries’ differentiated responsibilities to fulfill area-based conservation targets of the Kunming–Montreal Global Biodiversity Framework. One Earth, 6(5), 548–559.Google Scholar
Song, H., Ordonez, A., Svenning, J. C., Qian, , Yin, X., Mao, L., Deng, T., & Zhang, J. (2021). Regional disparity in extinction risk: Comparison of disjunct plant genera between eastern Asia and eastern North America. Global Change Biology, 27(9), 1904–1914.Google Scholar
Sorte, J. B., Williams, S. L., & Carlton, J. T. (2010). Marine range shifts and species introductions: Comparative spread rates and community impacts. Global Ecology and Biogeography, 19(3), 303–316. https://doi.org/10.1111/j.1466-8238.2009.00519.xGoogle Scholar
Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. Science, 301(5629), 65–65.Google Scholar
Summers, D. M., Bryan, B. A., Crossman, N. D., & Meyer, W. S. (2012). Species vulnerability to climate change: Impacts on spatial conservation priorities and species representation. Global Change Biology, 18(7), 2335–2348.Google Scholar
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2, 686–690.Google Scholar
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5610–5615.Google Scholar
Tagliari, M. M., Danthu, P., Leong Pock Tsy, J.-M., Cornu, C., Lenoir, J., Carvalho-Rocha, V., & Vieilledent, G. (2021). Not all species will migrate poleward as the climate warms: The case of the seven baobab species in Madagascar. Global Change Biology, 27(23), 6071–6085.Google Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.Google Scholar
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8245–8250.Google Scholar
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371(6492), 65–66.Google Scholar
Trisos, C. H., Merow, C., & Pigot, A. L. (2020). The projected timing of abrupt ecological disruption from climate change. Nature, 580(7804), 496–501.Google Scholar
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348, 6234.Google Scholar
Ureta, C., Ramírez-Barrón, M., Sánchez-García, E. A., Cuervo-Robayo, A. P., Munguía-Carrara, M., Mendoza-Ponce, A., Gay, C., & Sánchez-Cordero, V. (2022). Species, taxonomic, and functional group diversities of terrestrial mammals at risk under climate change and land-use/cover change scenarios in Mexico. Global Change Biology, 28(23), 6992–7008.Google Scholar
van Heerwaarden, B., & Sgrò, C. M. (2021). Male fertility thermal limits predict vulnerability to climate warming. Nature Communications, 12(1), 2214.Google Scholar
Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S. H. M., Joppa, L., Alkemade, R., Di Marco, M., Santini, L., Hoffmann, M., Maiorano, L., Pressey, R. L., Arponen, A., Boitani, L., Reside, A. E., van Vuuren, D. P., & Rondinini, C. (2015). Projecting global biodiversity indicators under future development scenarios. Conservation Letters, 9(1), 5–13.Google Scholar
Warren, R., VanDerWal, J., Price, J., Welbergen, J. A., Atkinson, I., Ramirez-Villegas, J., Osborn, T. J., Jarvis, A., Shoo, L. P., Williams, S. E., & Lowe, J. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3(7), 678–682.Google Scholar
White, K. S., Gregovich, D. P., & Levi, T. (2018). Projecting the future of an alpine ungulate under climate change scenarios. Global Change Biology, 24(3), 1136–1149.Google Scholar
Wieder, W. R., Kennedy, D., Lehner, F., Musselman, K. N., Rodgers, K. B., Rosenbloom, N., Simpson, I. R., & Yamaguchi, R. (2022). Pervasive alterations to snow-dominated ecosystem functions under climate change. Proceedings of the National Academy of Sciences of the United States of America, 119(30), e2205556119.Google Scholar
Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 106(Suppl 2), 19729–19736.Google Scholar
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., & Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology, 6(12), e325.Google Scholar
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). Eltontraits 1.0: Species-level foraging attributes of 277 the world's birds and mammals. Ecology, 95(7), 2027.Google Scholar
World Meteorological Organisation (WMO) (2023). State of the global climate 2022. World Meteorological Organisation.Google Scholar
Wunderling, N., Staal, A., Sakschewski, B., Hirota, M., Tuinenburg, O. A., Donges, J. F., Barbosa, H. M. J., & Winkelmann, R. (2022). Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 119(32), e2200081119.Google Scholar
Yu, L., Du, Z., Dong, R., Zheng, J., Tu, Y., Chen, X., Hao, P., Zhong, B., Peng, D., Zhao, J., Li, X., Yang, J., Fu, H., Yang, G., & Gong, P. (2022). FROM-GLC Plus: Towards near real-time and multi-resolution land cover mapping. GIScience and Remote Sensing, 59(1), 1026–1047.Google Scholar
Zamora-Gutierrez, V., Rivera-Villanueva, A. N., Martínez Balvanera, S., Castro-Castro, A., & Aguirre-Gutiérrez, J. (2021). Vulnerability of bat–plant pollination interactions due to environmental change. Global Change Biology, 27(14), 3367–3382.Google Scholar
Zhou, Z., Steiner, N., Fivash, G. S., Cozzoli, F., Blok, D. B., van IJzerloo, L., van Dalen, J., Ysebaert, T., Walles, B., & Bouma, T. J. (2023). Temporal dynamics of heatwaves are key drivers of sediment mixing by bioturbators. Limnology and Oceanography, 68(5), 1105–1116.Google Scholar
Zurell, D., Thuiller, W., Pagel, J., Cabral, J. S., Münkemüller, T., Gravel, D., Dullinger, S., Normand, S., Schiffers, K. H., Moore, K. A., & Zimmermann, N. E. (2016). Benchmarking novel approaches for modelling species range dynamics. Global Change Biology, 22(8), 2651–2664.Google Scholar