Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-27T10:44:12.283Z Has data issue: false hasContentIssue false

Classification of multiplication modules over multiplication rings with finitely many minimal primes

Published online by Cambridge University Press:  03 October 2024

Volodymyr Bavula*
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK

Abstract

A classification of multiplication modules over multiplication rings with finitely many minimal primes is obtained. A characterization of multiplication rings with finitely many minimal primes is given via faithful, Noetherian, distributive modules. It is proven that for a multiplication ring with finitely many minimal primes every faithful, Noetherian, distributive module is a faithful multiplication module, and vice versa.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alsuraiheed, T. and Bavula, V. V., Characterization of multiplication commutative rings with finitely many minimal prime ideals, Commun. Algebra 47(11) (2019), 45334540.CrossRefGoogle Scholar
Alsuraiheed, T. and Bavula, V. V., Multiplication modules over noncommutative rings, J. Algebra 584 (2021), 6988.CrossRefGoogle Scholar
Barnard, A., Multiplication modules, J. Algebra 71(1) (1981), 174178.CrossRefGoogle Scholar
El-Bast, Z. A. and Smith, P. F., Multiplication modules, Commun. Algebra 16(4) (1988), 755779.CrossRefGoogle Scholar
Krull, W., Ideal Theory (New York, 1948).Google Scholar
Mott, J. L., Multiplication rings containing only finitely many minimal prime ideals, J. Sci. Hiroshima. UNIV. SER. 16(1) (1969), 7383 Google Scholar