Hostname: page-component-7b9c58cd5d-nzzs5 Total loading time: 0 Render date: 2025-03-15T22:37:33.130Z Has data issue: false hasContentIssue false

Measuring and controlling for the compromise effect when estimating risk preference parameters

Published online by Cambridge University Press:  14 March 2025

Jonathan P. Beauchamp*
Affiliation:
George Mason University, Arlington, USA
Daniel J. Benjamin
Affiliation:
University of Southern California, Los Angeles, USA NBER, Cambridge, USA
David I. Laibson
Affiliation:
NBER, Cambridge, USA Harvard University, Cambridge, USA
Christopher F. Chabris
Affiliation:
Geisinger Health Systems, Lewisburg, USA

Abstract

The compromise effect arises when being close to the “middle” of a choice set makes an option more appealing. The compromise effect poses conceptual and practical problems for economic research: by influencing choices, it can bias researchers’ inferences about preference parameters. To study this bias, we conduct an experiment with 550 participants who made choices over lotteries from multiple price lists (MPLs). Following prior work, we manipulate the compromise effect to influence choices by varying the middle options of each MPL. We then estimate risk preferences using a discrete-choice model without a compromise effect embedded in the model. As anticipated, the resulting risk preference parameter estimates are not robust, changing as the compromise effect is manipulated. To disentangle risk preference parameters from the compromise effect and to measure the strength of the compromise effect, we augment our discrete-choice model with additional parameters that represent a rising penalty for expressing an indifference point further from the middle of the ordered MPL. Using this method, we estimate an economically significant magnitude for the compromise effect and generate robust estimates of risk preference parameters that are no longer sensitive to compromise-effect manipulations.

Type
Original Paper
Copyright
Copyright © 2019 Economic Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10683-019-09640-z) contains supplementary material, which is available to authorized users.

References

Abdellaoui, M, Bleichrodt, H, & Paraschiv, C (2007). Loss aversion under prospect theory: A parameter-free measurement. Management Science, 53(10), 16591674. 10.1287/mnsc.1070.0711CrossRefGoogle Scholar
Andersen, S, Harrison, GW, Lau, MI, & Rutström, EE (2006). Elicitation using multiple price list formats. Experimental Economics, 9(4), 383405. 10.1007/s10683-006-7055-6CrossRefGoogle Scholar
Andersen, S, Harrison, GW, Lau, MI, & Rutström, EE (2008). Eliciting risk and time preferences. Econometrica, 76(3), 583618. 10.1111/j.1468-0262.2008.00848.xCrossRefGoogle Scholar
Andersson, O, Holm, HJ, Tyran, J-R, & Wengström, E (2016). Risk aversion relates to cognitive ability: Preferences or noise?. Journal of the European Economic Association, 14(5), 11291154. 10.1111/jeea.12179CrossRefGoogle Scholar
Apesteguia, J, & Ballester, MA (2018). Monotone stochastic choice models: The case of risk and time preferences. Journal of Political Economy, 126(1), 74106. 10.1086/695504CrossRefGoogle Scholar
Beauchamp, JP, Cesarini, D, & Johannesson, M (2017). The psychometric and empirical properties of measures of risk preferences. Journal of Risk and Uncertainty, 54(3), 203237. 10.1007/s11166-017-9261-3CrossRefGoogle Scholar
Benjamin, DJ, Brown, SA, & Shaprio, JM (2013). Who is ‘behavioral’? Cognitive ability and anomalous preferences. Journal of the European Economic Association, 11(6), 12311255. 10.1111/jeea.12055CrossRefGoogle ScholarPubMed
Birnbaum, MH (1992). Violations of monotonicity and contextual effects in choice-based certainty equivalents. Psychological Science, 3(5), 310314. 10.1111/j.1467-9280.1992.tb00679.xCrossRefGoogle Scholar
Booij, AS, van Praag, BMS, & van de Kuilen, G (2010). A parametric analysis of prospect theory’s functionals for the general population. Theory and Decision, 68, 115148. 10.1007/s11238-009-9144-4CrossRefGoogle Scholar
Bruhin, A, Fehr-Duda, H, & Epper, T (2010). Risk and rationality: Uncovering heterogeneity in probability distortion. Econometrica, 78(4), 13751412. 10.3982/ECTA7139Google Scholar
Dohmen, T, Falk, A, Huffman, D, & Sunde, U (2010). Are risk aversion and impatience related to cognitive ability?. American Economic Review, 100(3), 1238–60 10.1257/aer.100.3.1238CrossRefGoogle Scholar
Dohmen, T, Falk, A, Huffman, D, & Sunde, U (2018). On the relationship between cognitive ability and risk preference. Journal of Economic Perspectives, 32(2), 115–34 10.1257/jep.32.2.115CrossRefGoogle ScholarPubMed
Fehr-Duda, H, & Epper, T (2012). Probability and risk: Foundations and economic implications of probability-dependent risk preferences. Annual Review of Economics, 4, 567593. 10.1146/annurev-economics-080511-110950CrossRefGoogle Scholar
Fox, CR, Poldrack, RA Glimcher, PW, & Fehr, E (2014). Prospect theory and the brain. Neuroeconomics: Decision making and the brain, 2Cambridge: Academic Press 533567. 10.1016/B978-0-12-416008-8.00042-5CrossRefGoogle Scholar
Freeman, D, Halevy, Y, & Kneeland, T (2019). Eliciting risk preferences using choice lists. Quantitative Economics, 10, 217237. 10.3982/QE856CrossRefGoogle Scholar
Gächter, S., Johnson, E., & Herrmann, A. (2007). Individual-level loss aversion in riskless and risky choices. IZA discussion paper no. 2961.CrossRefGoogle Scholar
Harrison, GW, Johnson, E, McInnes, MM, & Rutström, EE (2005). Risk aversion and incentive effects: Comment. American Economic Review, 95(3), 897901. 10.1257/0002828054201378CrossRefGoogle Scholar
Harrison, GW, Lau, MI, Rutström, EE, Sullivan, MB Carpenter, J, Harrison, G, & List, J (2005). Eliciting risk and time preferences using field experiments: Some methodological issues. Field experiments in economics (Research in experimental economics), Bingley: Emerald Group Publishing Limited 125218. 10.1016/S0193-2306(04)10005-7CrossRefGoogle Scholar
Harrison, GW, Lau, MI, & Rutström, EE (2007). Estimating risk attitudes in Denmark: A field experiment. Scandinavian Journal of Economics, 109(2), 341368. 10.1111/j.1467-9442.2007.00496.xCrossRefGoogle Scholar
Harrison, GW, List, JA, & Towe, C (2007). Naturally occurring preferences and exogenous laboratory experiments: A case study of risk aversion. Econometrica, 75(2), 433458. 10.1111/j.1468-0262.2006.00753.xCrossRefGoogle Scholar
Harrison, GW, Rutström, EE Cox, J, & Harrison, G (2008). Risk aversion in the laboratory. Risk aversion in experiments (Research in experimental economics), Bingley: Emerald Group Publishing Limited 41196. 10.1016/S0193-2306(08)00003-3Google Scholar
Hey, JD, & Orme, C (1994). Investigating generalizations of expected utility theory using experimental data. Econometrica, 62(6), 12911326. 10.2307/2951750CrossRefGoogle Scholar
Hjorth, K, & Fosgerau, M (2011). Loss aversion and individual characteristics. Environmental and Resource Economics, 49(4), 573596. 10.1007/s10640-010-9455-5CrossRefGoogle Scholar
Holt, CA, & Laury, SK (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 16441655. 10.1257/000282802762024700CrossRefGoogle Scholar
Kamenica, E (2008). Contextual inference in markets: On the informational content of product lines. American Economic Review, 98(5), 21272149. 10.1257/aer.98.5.2127CrossRefGoogle Scholar
Köbberling, V, & Wakker, P (2005). An index of loss aversion. Journal of Economic Theory, 122, 119131. 10.1016/j.jet.2004.03.009CrossRefGoogle Scholar
Koppell, JGS, & Steen, JA (2004). The effects of ballot position on election outcomes. Journal of Politics, 66(1), 267281. 10.1046/j.1468-2508.2004.00151.xCrossRefGoogle Scholar
Köszegi, B, & Rabin, M (2006). A model of reference-dependent preferences. Quarterly Journal of Economics, 121(4), 11331165.Google Scholar
Köszegi, B, & Rabin, M (2007). Reference-dependent risk attitudes. American Economic Review, 97(4), 10471073. 10.1257/aer.97.4.1047CrossRefGoogle Scholar
Lichtenstein, S, Slovic, P, & Zink, D (1969). The effect of instruction in expected value optimality of gambling decisions. Journal of Experimental Psychology, 79(2), 236240. 10.1037/h0026888CrossRefGoogle Scholar
Montgomery, H, & Adelbratt, T (1982). Gambling decisions and information about expected value. Organizational Behavior and Human Performance, 29, 3957. 10.1016/0030-5073(82)90241-0CrossRefGoogle Scholar
Prelec, D (1998). The probability weighting function. Econometrica, 66(3), 497527. 10.2307/2998573CrossRefGoogle Scholar
Saha, A (1993). Expo-power utility: A ‘flexible’form for absolute and relative risk aversion. American Journal of Agricultural Economics, 75(4), 905913. 10.2307/1243978CrossRefGoogle Scholar
Simonson, I (1989). Choice based on reasons: The case of attraction and compromise effects. Journal of Consumer Research, 16(2), 158174. 10.1086/209205CrossRefGoogle Scholar
Sprenger, C (2015). An endowment effect for risk: Experimental tests of stochastic reference points. Journal of Political Economy, 123(6), 14561499. 10.1086/683836CrossRefGoogle Scholar
Tversky, A, & Kahneman, D (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 11241131. 10.1126/science.185.4157.1124CrossRefGoogle ScholarPubMed
Tversky, A, & Kahneman, D (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5(4), 297323. 10.1007/BF00122574CrossRefGoogle Scholar
Wakker, PP (2010). Prospect theory: For risk and ambiguity, Cambridge: Cambridge University Press 10.1017/CBO9780511779329CrossRefGoogle Scholar
Wilcox, NT (2011). ‘Stochastically more risk averse:’ A contextual theory of stochastic discrete choice under risk. Journal of Econometrics, 162(1), 89104. 10.1016/j.jeconom.2009.10.012CrossRefGoogle Scholar
Supplementary material: File

Beauchamp et al. supplementary material

Online Appendix
Download Beauchamp et al. supplementary material(File)
File 524.4 KB
Supplementary material: File

Beauchamp et al. supplementary material

Beauchamp et al. supplementary material 1
Download Beauchamp et al. supplementary material(File)
File 5.5 MB