Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-29T15:25:50.482Z Has data issue: false hasContentIssue false

Substreetutions and more on trees

Published online by Cambridge University Press:  08 April 2024

ALEXANDRE BARAVIERA
Affiliation:
Instituto de Matemática e Estatística - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre CEP 91509-900, RS, Brazil (e-mail: [email protected])
RENAUD LEPLAIDEUR*
Affiliation:
ISEA, Université de la Nouvelle-Calédonie & LMBA CNRS UMR6205, Nouméa, New Caledonia

Abstract

We define a notion of substitution on colored binary trees that we call substreetution. We show that a point fixed by a substreetution may (or not) be almost periodic, and thus the closure of the orbit under the $\mathbb {F}_{2}^{+}$-action may (or not) be minimal. We study one special example: we show that it belongs to the minimal case and that the number of preimages in the minimal set increases just exponentially fast, whereas it could be expected a super-exponential growth. We also give examples of periodic trees without invariant measures on their orbit. We use our construction to get quasi-periodic colored tilings of the hyperbolic disk.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baraviera, A., Leplaideur, R. and Lopes, A.. The potential point of view for renormalization. Stoch. Dyn. 12(4) (2012), 1250005.10.1142/S0219493712500050CrossRefGoogle Scholar
Beckus, S., Hartnick, T. and Pogorzelski, F.. Symbolic substitution systems beyond abelian groups. Preprint, 2021, arXiv:2109.15210.Google Scholar
Bédaride, N. and Hilion, A.. Geometric realizations of 2-dimensional substitutive tilings. Q. J. Math. 64(4) (2013), 955979.10.1093/qmath/has025CrossRefGoogle Scholar
Benjamini, I. and Peres, Y.. Markov chains indexed by trees. Ann. Probab. 22(1) (1994), 219243.10.1214/aop/1176988857CrossRefGoogle Scholar
Berstel, J., Boasson, L., Carton, O. and Fagnot, I.. A first investigation of Sturmian trees. STACS 2007: Proceedings 24th Annual Symposium on Theoretical Aspects of Computer Science (Aachen, Germany, February 22–24, 2007). Ed. Thomas, W. and Weil, P.. Springer, Berlin, 2007, pp. 7384.10.1007/978-3-540-70918-3_7CrossRefGoogle Scholar
Bruin, H. and Leplaideur, R.. Renormalization, thermodynamic formalism for quasi-crystals in subshifts. Comm. Math. Phys. 231 (2013), 209247.10.1007/s00220-012-1651-4CrossRefGoogle Scholar
Bruin, H. and Leplaideur, R.. Renormalization, freezing phase transition and Fibonacci quasicrystals. Ann. Sci. Éc. Norm. Supér. (4) 48(fascicule 3) (2015), 739763.10.24033/asens.2257CrossRefGoogle Scholar
Dal’Bo, F.. Geodesic and Horocyclic Trajectories (Universitext). Springer-Verlag, London, 2011; EDP Sciences, Les Ulis.10.1007/978-0-85729-073-1CrossRefGoogle Scholar
Damm, W.. The IO- and OI-hierarchies. Theoret. Comput. Sci. 20 (1982), 95207.10.1016/0304-3975(82)90009-3CrossRefGoogle Scholar
de Vries, J.. Elements of Topological Dynamics. Springer, Dordrecht, 1993.10.1007/978-94-015-8171-4CrossRefGoogle Scholar
Ellis, D. B., Ellis, R. and Nerurkar, M.. The topological dynamics of semigroup actions. Trans. Amer. Math. Soc. 353(4) (2001), 12791320.10.1090/S0002-9947-00-02704-5CrossRefGoogle Scholar
Fogg, P.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Springer, Berlin, 2002.10.1007/b13861CrossRefGoogle Scholar
Furstenberg, H. and Weiss, B.. Markov processes and Ramsey theory for trees. Combin. Probab. Comput. 12 (2003), 547563.10.1017/S0963548303005893CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 2010.Google Scholar
Kim, D. H., Lee, B., Lim, S. and Sim, D.. Quasi–Sturmian colorings on regular trees. Ergod. Th. & Dynam. Sys. 40(12) (2020), 34033419.10.1017/etds.2019.53CrossRefGoogle Scholar
Krylov, N. and Bogolubov, N.. La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire. Ann. of Math. (2) 38 (1937), 65113.10.2307/1968511CrossRefGoogle Scholar
Müllner, C. and Yassawi, R.. Automorphisms of automatic shifts. Ergod. Th. & Dynam. Sys. 41 (2021), 15301559.10.1017/etds.2020.13CrossRefGoogle Scholar
Nguyen, Q. V. and Huang, M. L.. Space optimized tree: a connection+enclosure approach for the visualization of large hierarchies. Inform. Vis. 2 (2003), 315.10.1057/palgrave.ivs.9500031CrossRefGoogle Scholar
Petersen, K. and Salama, I.. Entropy on regular trees. Discrete Contin. Dyn. Syst. 40(7) (2020), 44534477.10.3934/dcds.2020186CrossRefGoogle Scholar
Przytycki, F.. Conical limit set and Poincaré exponent for iterations of rational functions. Trans. Amer. Math. Soc. 351(5) (1999), 20812099.10.1090/S0002-9947-99-02195-9CrossRefGoogle Scholar
Przytycki, F., Rivera-Letelier, J. and Smirnov, S.. Equality of pressures for rational functions. Ergod. Th. & Dynam. Sys. 24(3) (2004), 891914.10.1017/S0143385703000385CrossRefGoogle Scholar
Queffelec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer, Berlin, 2010.10.1007/978-3-642-11212-6CrossRefGoogle Scholar
Rozikov, U. A.. Gibbs Measures on Cayley Trees. World Scientific, Singapore, 2013.10.1142/8841CrossRefGoogle Scholar
Spitzer, F.. Markov random fields on an infinite tree. Ann. Probab. 3(5) (1975), 387398.10.1214/aop/1176996347CrossRefGoogle Scholar