Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Barnsley, M. F.
Morley, T. D.
and
Vrscay, E. R.
1985.
Iterated networks and the spectra of renormalizable electromechanical systems.
Journal of Statistical Physics,
Vol. 40,
Issue. 1-2,
p.
39.
Mañé, Ricardo
1985.
On the Bernoulli property for rational maps.
Ergodic Theory and Dynamical Systems,
Vol. 5,
Issue. 1,
p.
71.
Przytycki, Feliks
1985.
Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map.
Inventiones Mathematicae,
Vol. 80,
Issue. 1,
p.
161.
Lopes, Artur Oscar
1986.
Orthogonality and the Hausdorff dimension of the maximal measure.
Proceedings of the American Mathematical Society,
Vol. 98,
Issue. 1,
p.
51.
Peitgen, Heinz-Otto
and
Richter, Peter H.
1986.
The Beauty of Fractals.
p.
147.
Newhouse, Sheldon E.
1987.
The Physics of Phase Space Nonlinear Dynamics and Chaos Geometric Quantization, and Wigner Function.
Vol. 278,
Issue. ,
p.
1.
Vaienti, S.
1987.
Lyapunov exponent and bounds for the Dausdorff dimension of Julia sets of polynomial maps.
Il Nuovo Cimento B,
Vol. 99,
Issue. 1,
p.
77.
Saupe, Dietmar
1987.
Efficient computation of Julia sets and their fractal dimension.
Physica D: Nonlinear Phenomena,
Vol. 28,
Issue. 3,
p.
358.
Mañé, Ricardo
1988.
Dynamical Systems Valparaiso 1986.
Vol. 1331,
Issue. ,
p.
86.
Servizi, G.
Turchetti, G.
and
Vaienti, S.
1988.
Generalized dynamical variables and measures for the Julia sets.
Il Nuovo Cimento B,
Vol. 101,
Issue. 3,
p.
285.
Vaienti, S
1988.
Some properties of mixing repellers.
Journal of Physics A: Mathematical and General,
Vol. 21,
Issue. 9,
p.
2023.
Vaienti, S
1988.
Generalised spectra for the dimensions of strange sets.
Journal of Physics A: Mathematical and General,
Vol. 21,
Issue. 10,
p.
2313.
Bessis, D.
Paladin, G.
Turchetti, G.
and
Vaienti, S.
1988.
Generalized dimensions, entropies, and Liapunov exponents from the pressure function for strange sets.
Journal of Statistical Physics,
Vol. 51,
Issue. 1-2,
p.
109.
Turchetti, G.
and
Vaienti, S.
1988.
Analytical estimates of fractal and dynamical properties for one-dimensional expanding maps.
Physics Letters A,
Vol. 128,
Issue. 6-7,
p.
343.
1988.
Entropy and volume.
Ergodic Theory and Dynamical Systems,
Vol. 8,
Issue. 8,
p.
283.
Lopes, Artur O.
1989.
An analogy of the charge distribution on Julia sets with the Brownian motion.
Journal of Mathematical Physics,
Vol. 30,
Issue. 9,
p.
2120.
Lopes, Artur Oscar
1989.
A note on ?-equilibrium measures for rational maps.
Mathematische Zeitschrift,
Vol. 202,
Issue. 2,
p.
261.
Lopes, Artur O.
1989.
The Dimension Spectrum of the Maximal Measure.
SIAM Journal on Mathematical Analysis,
Vol. 20,
Issue. 5,
p.
1243.
Levin, G. M.
1990.
Symmetries on the Julia set.
Mathematical Notes of the Academy of Sciences of the USSR,
Vol. 48,
Issue. 5,
p.
1126.
Zdunik, Anna
1990.
Parabolic orbifolds and the dimension of the maximal measure for rational maps.
Inventiones Mathematicae,
Vol. 99,
Issue. 1,
p.
627.