Hostname: page-component-55f67697df-zpzq9 Total loading time: 0 Render date: 2025-05-09T13:55:08.545Z Has data issue: false hasContentIssue false

Comparative Analysis of Burn Injuries in Toddler and Preschool Children: Implications for Triage and Outcome Assessment

Published online by Cambridge University Press:  24 October 2024

Mehmet Ozel
Affiliation:
University of Health Sciences, Department of Emergency Medicine, Diyarbakır Gazi Yasargil Training and Research Hospital, Diyarbakır, Turkey
Sarper Yilmaz*
Affiliation:
University of Health Sciences, Department of Emergency Medicine, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
Ali Cankut Tatliparmak
Affiliation:
Uskudar University Faculty of Medicine, Department of Emergency Medicine, Istanbul, Turkey
Rohat Ak
Affiliation:
University of Health Sciences, Department of Emergency Medicine, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
*
Corresponding author: Sarper Yilmaz; Email: [email protected]

Abstract

Objective

This study aims to compare the demographic, clinical characteristics, and outcomes of burn injuries in toddler and preschool children, and to validate the American Burn Association (ABA) Burn Triage Decision Matrix in the Turkish pediatric population.

Methods

A retrospective analysis was conducted on 684 pediatric burn patients (494 toddlers, 190 preschoolers) admitted to our burn center over a 5-year period. Variables including gender, burn etiology, burn area, depth, treatment modalities, complications, length of hospital stay, and mortality were analyzed. The performance of the ABA Burn Triage Decision Matrix was evaluated in both groups.

Results

Scalding was the predominant cause of burns in both groups, with a significant difference in the involvement of anterior trunk (p = 0.027). The mean Total Body Surface Area (TBSA) was comparable between the groups (p = 0.286). There was no significant difference in mortality rates (p = 0.385), treatment modalities, and complications. The ABA Burn Triage Decision Matrix demonstrated consistency in triaging the severity of burn injuries, with a notable discrepancy observed in the moderate risk category of toddler group.

Conclusions

This study highlights the distinct characteristics and outcomes of burn injuries in different pediatric age groups. The ABA Burn Triage Decision Matrix’s validation suggests its utility in enhancing triage accuracy and resource allocation in pediatric populations, especially in disaster-prone regions.

Type
Original Research
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Burns. World Health Organization. 2023. Published 13 October 2023. Accessed October 24, 2023. https://www.who.int/news-room/fact-sheets/detail/burnsGoogle Scholar
Rani, M, Schwacha, MG. Aging and the pathogenic response to burn. Aging Dis. 2011;3(2):171180. Accessed October 24, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377829/Google ScholarPubMed
Jeng, J, Gibran, N, Peck, M. Burn care in disaster and other austere settings. Surg Clin North Am. 2014;94(4):893907. doi:10.1016/j.suc.2014.05.011CrossRefGoogle ScholarPubMed
Actionable, Revised (v.3), and Amplified American Burn Association Triage Tables for Mass Casualties: A Civilian Defense Guideline | Journal of Burn Care & Research | Oxford Academic. 2020. Published 27 March 2020. Accessed October 25, 2023. https://academic.oup.com/jbcr/article/41/4/770/5812600?login=falseCrossRefGoogle Scholar
Taylor, S, Jeng, J, Saffle, JR, et al. Redefining the outcomes to resources ratio for burn patient triage in a mass casualty. J Burn Care Res. 2014;35(1):4145. doi:10.1097/BCR.0000000000000034CrossRefGoogle ScholarPubMed
Shubert, J, Sharma, S. Inhalation injury. In: StatPearls. StatPearls Publishing; 2023. Accessed October 25, 2023. http://www.ncbi.nlm.nih.gov/books/NBK513261/Google Scholar
Jeschke, MG, Pinto, R, Kraft, R, et al. Morbidity and survival probability in burn patients in modern burn care. Crit Care Med. 2015;43(4):808815. doi:10.1097/CCM.0000000000000790CrossRefGoogle ScholarPubMed
Santaniello, JM, Luchette, FA, Esposito, TJ, et al. Ten year experience of burn, trauma, and combined burn/trauma injuries comparing outcomes. J Trauma. 2004;57(4):696–700; dicussion 700-701. doi:10.1097/01.ta.0000140480.50079.a8CrossRefGoogle ScholarPubMed
Ahuja, RB, Bhattacharya, S. Burns in the developing world and burn disasters. BMJ. 2004;329(7463):447449. Accessed October 25, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514214/CrossRefGoogle ScholarPubMed
Scott, JR, Costa, BA, Gibran, NS, et al. Pediatric palm contact burns: a ten-year review. J Burn Care Res. 2008;29(4):614618. doi:10.1097/BCR.0b013e31817db8f2CrossRefGoogle Scholar
Pham, TN, Kramer, CB, Wang, J, et al. Epidemiology and outcomes of older adults with burn injury: an analysis of the National Burn Repository. J Burn Care Res. 2009;30(1):3036. doi:10.1097/BCR.0b013e3181921efcCrossRefGoogle ScholarPubMed
Caetano, P, Brandão, C, Campos, I, et al. Aging and burn: a five-year retrospective study in a major burn centre in Portugal. Ann Burns Fire Disasters. 2018;31(3):163167. Accessed October 25, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367867/Google Scholar
Secanho, MS, Rajesh, A, Menezes Neto, BF, et al. Epidemiology of burn-related morbidity and mortality in patients over 80 years of age. J Burn Care Res. 2022;43(5):10421047. doi:10.1093/jbcr/irab205CrossRefGoogle ScholarPubMed
Li, H, Yao, Z, Tan, J, et al. Epidemiology and outcome analysis of 6325 burn patients: a five-year retrospective study in a major burn center in Southwest China. Sci Rep. 2017;7:46066. doi:10.1038/srep46066CrossRefGoogle Scholar
Wang, W, Zhang, J, Lv, Y, et al. Epidemiological investigation of elderly patients with severe burns at a major burn center in Southwest China. Med Sci Monit. 2020;26:e918537-1-e918537-12. doi:10.12659/MSM.918537Google Scholar
Yılmaz, S, Karakayali, O, Yilmaz, S, et al. Emergency medicine association of Turkey Disaster Committee summary of field observations of February 6th Kahramanmaraş earthquakes. Prehosp Disaster Med. 2023;38(3):415418. doi:10.1017/S1049023X23000523CrossRefGoogle ScholarPubMed
UNICEF: Yıkıcı depremlerin birinci haftasında, milyonlarca çocuk acil insani yardıma ihtiyaç duyuyor. 2023. Published 14 February 2023. Accessed October 25, 2023. https://www.unicef.org/turkiye/bas%C4%B1n-b%C3%BCltenleri/unicef-y%C4%B1k%C4%B1c%C4%B1-depremlerin-birinci-haftas%C4%B1nda-milyonlarca-%C3%A7ocuk-acil-insani-yard%C4%B1maGoogle Scholar
Chan, CW, Green, LV, Lu, Y, et al. Prioritizing burn-injured patients during a disaster. Manuf Serv Oper Manag. Published online December 19, 2012. doi:10.1287/msom.1120.0412CrossRefGoogle Scholar
Barrow, RE, Spies, M, Barrow, LN, et al. Influence of demographics and inhalation injury on burn mortality in children. Burns. 2004;30(1):7277. doi:10.1016/j.burns.2003.07.003CrossRefGoogle ScholarPubMed
Alharthy, N, Al Mutairi, M, AlQueflie, S, et al. Pattern of burns identified in the Pediatrics Emergency Department at King Abdul-Aziz Medical City: Riyadh. J Nat Sci Biol Med. 2016;7(1):1621. doi:10.4103/0976-9668.175019CrossRefGoogle ScholarPubMed
Child Maltreatment. World Health Organization. 2022. Published 19 September 2022. Accessed October 25, 2023. https://www.who.int/news-room/fact-sheets/detail/child-maltreatmentGoogle Scholar
Thombs, BD. Patient and injury characteristics, mortality risk, and length of stay related to child abuse by burning: evidence from a national sample of 15,802 pediatric admissions. Ann Surg. 2008;247(3):519523. doi:10.1097/SLA.0b013e31815b4480CrossRefGoogle ScholarPubMed
Feng, S, Tan, H, Benjamin, A, et al. Social support and posttraumatic stress disorder among flood victims in Hunan, China. Ann Epidemiol. 2007;17(10):827833. doi:10.1016/j.annepidem.2007.04.002CrossRefGoogle ScholarPubMed
Face, S, Dalton, S. Consistency of total body surface area assessment in severe burns: implications for practice. Emerg Med Australas. 2017;29(4):429432. doi:10.1111/1742-6723.12806CrossRefGoogle ScholarPubMed
Schaefer, TJ, Szymanski, KD. Burn evaluation and management. In: StatPearls. StatPearls Publishing; 2023. Accessed October 25, 2023. http://www.ncbi.nlm.nih.gov/books/NBK430741/Google Scholar
Schaefer, TJ, Nunez Lopez, O. Burn resuscitation and management. In: StatPearls. StatPearls Publishing; 2023. Accessed November 1, 2023. http://www.ncbi.nlm.nih.gov/books/NBK430795/Google Scholar
Sharma, RK, Parashar, A. Special considerations in paediatric burn patients. Indian J Plast Surg. 2010;43(Suppl):S43-S50. doi:10.4103/0970-0358.70719CrossRefGoogle Scholar
Monstrey, S, Hoeksema, H, Verbelen, J, et al. Assessment of burn depth and burn wound healing potential. Burns. 2008;34(6):761769. doi:10.1016/j.burns.2008.01.009CrossRefGoogle ScholarPubMed
Ayaz, M, Keshavarzi, A, Bahadoran, H, et al. Comparison of the results of early excision and grafting between children and adults: a prospective comparative study. Bull Emerg Trauma. 2017;5(3):179183. Accessed October 26, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547205/Google ScholarPubMed
ABA Board of Trustees, Committee on Organization and Delivery of Burn Care. Disaster management and the ABA Plan. J Burn Care Rehabil. 2005;26(2):102106. doi:10.1097/01.bcr.0000158926.52783.66CrossRefGoogle Scholar