Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-05-06T06:50:01.709Z Has data issue: false hasContentIssue false

Resting-state alterations in emotion salience and default-mode network connectivity in atypical trajectories of psychotic-like experiences

Published online by Cambridge University Press:  19 September 2024

Roxane Assaf
Affiliation:
Centre de Recherche de l’Institut Universitaire en Santé Mentale De Montréal, Montreal, QC, Canada Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
Julien Ouellet
Affiliation:
Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
Josiane Bourque
Affiliation:
Department of Psychiatry, Perelman Faculty of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Emmanuel Stip
Affiliation:
Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
Marco Leyton
Affiliation:
Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
Patricia Conrod
Affiliation:
Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
Stéphane Potvin*
Affiliation:
Centre de Recherche de l’Institut Universitaire en Santé Mentale De Montréal, Montreal, QC, Canada Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
*
Corresponding author: Stéphane Potvin; Email: [email protected]

Abstract

Social cognition is commonly altered in people with psychosis. Two main brain networks have been implicated: the default-mode network (DMN), which is associated with socio-cognitive processing, and the salience network (SN) associated with socio-affective processing. Disturbances to the resting-state functional connectivity of these networks have been identified in schizophrenia and high-risk individuals, but there have been no studies in adolescents displaying distinct trajectories of subclinical psychotic-like experiences (PLEs). To address this, the present study measured SN and DMN resting-state connectivity in a unique longitudinally followed sample of youth (n = 92) presenting with typical and atypical 4-year PLE trajectories. Compared to the typically developing low PLE control group, the atypical increasing PLE trajectory displayed reduced connectivity between the SN and DMN, increased connectivity between left and right insula, and widespread dysconnectivity from the insula and amygdala. These alterations are similar to those reported in schizophrenia and clinical high-risk samples, suggesting that early detection may be useful for mapping the developmental trajectories of psychotic disorders.

Type
Regular Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Achim, A. M., Ouellet, R., Roy, M.-A., & Jackson, P. L. (2012). Mentalizing in first-episode psychosis. Psychiatry Research, 196(2), 207213. https://doi.org/10.1016/j.psychres.2011.10.011 CrossRefGoogle ScholarPubMed
Adolphs, R. (1999). Social cognition and the human brain. Trends in Cognitive Sciences, 3(12), 0 13996.CrossRefGoogle ScholarPubMed
Alcalá-López, D., Vogeley, K., Binkofski, F., & Bzdok, D. (2019). Building blocks of social cognition : Mirror, mentalize, share? Cortex, 118, 418. https://doi.org/10.1016/j.cortex.2018.05.006 CrossRefGoogle ScholarPubMed
Andreou, C., & Borgwardt, S. (2020). Structural and functional imaging markers for susceptibility to psychosis. Molecular Psychiatry, 13(11), 113. https://doi.org/10.1038/s41380-020-0679-7 Google Scholar
Assaf, R., Ouellet, J., Bourque, J., Stip, E., Leyton, M., Conrod, P., & Potvin, S. (2022a). A functional neuroimaging study of self-other processing alterations in atypical developmental trajectories of psychotic-like experiences. Scientific Reports, 12(1), 16324. https://doi.org/10.1038/s41598-022-20129-3 CrossRefGoogle ScholarPubMed
Assaf, R., Ouellet, J., Bourque, J., Stip, E., Leyton, M., Conrod, P., & Potvin, S. (2022b). Neural alterations of emotion processing in atypical trajectories of psychotic-like experiences. Schizophrenia (Heidelb), 8(1), 40. https://doi.org/10.1038/s41537-022-00250-y.CrossRefGoogle ScholarPubMed
Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T. T., Krienen, F., Buckner, R. L., & Öngür, D. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71(2), 118. https://doi.org/10.1001/jamapsychiatry.2013.3469 CrossRefGoogle ScholarPubMed
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90101. https://doi.org/10.1016/j.neuroimage.2007.04.042 CrossRefGoogle ScholarPubMed
Berboth, S., & Morawetz, C. (2021). Amygdala-prefrontal connectivity during emotion regulation : A meta-analysis of psychophysiological interactions. Neuropsychologia, 153, 107767. https://doi.org/10.1016/j.neuropsychologia.2021.107767 CrossRefGoogle ScholarPubMed
Bernard, M., Bolognini, M., Plancherel, B., Chinet, L., Laget, J., Stephan, P., & Halfon, O. (2005). French validity of two substance-use screening tests among adolescents : A comparison of the CRAFFT and DEP-ADO. Journal of Substance Use, 10(6), 385-395–395. https://doi.org/10.1080/14659890412331333050 CrossRefGoogle Scholar
Bourque, J., Afzali, M. H., O’Leary-Barrett, M., & Conrod, P. (2017). Cannabis use and psychotic-like experiences trajectories during early adolescence: The coevolution and potential mediators. Journal of Child Psychology and Psychiatry, 58(12), 13601369. https://doi.org/10.1111/jcpp.12765 CrossRefGoogle ScholarPubMed
Brunoni, A. R., & Vanderhasselt, M.-A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex : A systematic review and meta-analysis. Brain and Cognition, 86, 19. https://doi.org/10.1016/j.bandc.2014.01.008 CrossRefGoogle ScholarPubMed
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition : ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217(4), 783796. https://doi.org/10.1007/s00429-012-0380-y CrossRefGoogle ScholarPubMed
Chai, X. J., Castañón, A. N., Öngür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59(2), 14201428. https://doi.org/10.1016/j.neuroimage.2011.08.048 CrossRefGoogle ScholarPubMed
Chen, W. G., Schloesser, D., Arensdorf, A. M., Simmons, J. M., Cui, C., Valentino, R., Gnadt, J. W., Nielsen, L., Hillaire-Clarke, C. St, Spruance, V., Horowitz, T. S., Vallejo, Y. F., & Langevin, H. M. (2021). The emerging science of interoception : Sensing, integrating, interpreting, and regulating signals within the self. Trends in Neurosciences, 44(1), 316. https://doi.org/10.1016/j.tins.2020.10.007 CrossRefGoogle ScholarPubMed
Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970.CrossRefGoogle Scholar
Critchley, H. D., Corfield, D. R., Chandler, M. P., Mathias, C. J., & Dolan, R. J. (2000). Cerebral correlates of autonomic cardiovascular arousal : A functional neuroimaging investigation in humans. The Journal of Physiology, 523(1), 259270. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00259.x CrossRefGoogle ScholarPubMed
Del Fabro, L., Schmidt, A., Fortea, L., Delvecchio, G., D’Agostino, A., Radua, J., Borgwardt, S., & Brambilla, P. (2021). Functional brain network dysfunctions in subjects at high-risk for psychosis : A meta-analysis of resting-state functional connectivity. Neuroscience & Biobehavioral Reviews, 128, 90101. https://doi.org/10.1016/j.neubiorev.2021.06.020 CrossRefGoogle ScholarPubMed
Dominguez, M. D. G., Wichers, M., Lieb, R., Wittchen, H.-U., & van Os, J. (2011). Evidence that onset of clinical psychosis Is an outcome of progressively more persistent subclinical psychotic experiences : An 8-year cohort study. Schizophrenia Bulletin, 37(1), 8493. https://doi.org/10.1093/schbul/sbp022 CrossRefGoogle ScholarPubMed
Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of large-scale brain networks in schizophrenia : A meta-analysis of resting-state functional connectivity. Schizophr Bull, 44(1), 168181.CrossRefGoogle ScholarPubMed
Donkersgoed, R. J. M.van, Wunderink, L., Nieboer, R., Aleman, A., & Pijnenborg, G. H. M. (2015). Social cognition in individuals at ultra-high risk for psychosis : A meta-analysis. PLOS ONE, 10(10), e0141075. https://doi.org/10.1371/journal.pone.0141075 CrossRefGoogle ScholarPubMed
Friederici, A. D., Opitz, B., & von Cramon, D. Y. (2000). Segregating semantic and syntactic aspects of processing in the human brain : An fMRI investigation of different word types. Cerebral Cortex, 10(7), 698705. https://doi.org/10.1093/cercor/10.7.698 CrossRefGoogle Scholar
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network : Replication from DCM. NeuroImage, 99, 180190. https://doi.org/10.1016/j.neuroimage.2014.05.052 CrossRefGoogle Scholar
Green, M. F., Horan, W. P., & Lee, J. (2019). Nonsocial and social cognition in schizophrenia : Current evidence and future directions. World Psychiatry, 18(2), 146161. https://doi.org/10.1002/wps.20624 CrossRefGoogle ScholarPubMed
Gur, R. C., Sara, R., Hagendoorn, M., Marom, O., Hughett, P., Macy, L., Turner, T., Bajcsy, R., Posner, A., & Gur, R. E. (2002). A method for obtaining 3-dimensional facial expressions and its standardization for use in neurocognitive studies. Journal of Neuroscience Methods, 115(2), 137143. https://doi.org/10.1016/S0165-0270(02)00006-7 CrossRefGoogle ScholarPubMed
Healy, C., Brannigan, R., Dooley, N., Coughlan, H., Clarke, M., Kelleher, I., & Cannon, M. (2019). Childhood and adolescent psychotic experiences and risk of mental disorder : A systematic review and meta-analysis. Psychological Medicine, 49(10), 15891599. https://doi.org/10.1017/S0033291719000485 CrossRefGoogle ScholarPubMed
Heim, S., Eickhoff, S. B., Friederici, A. D., & Amunts, K. (2009). Left cytoarchitectonic area 44 supports selection in the mental lexicon during language production. Brain Structure and Function, 213(4), 441456. https://doi.org/10.1007/s00429-009-0213-9 CrossRefGoogle Scholar
Hilland, E., Johannessen, C., Jonassen, R., Alnæs, D., Jørgensen, K. N., Barth, C., Andreou, D., Nerland, S., Wortinger, L. A., Smelror, R. E., Wedervang-Resell, K., Bohman, H., Lundberg, M., Westlye, L. T., Andreassen, O. A., Jönsson, E. G., & Agartz, I. (2022). Aberrant default mode connectivity in adolescents with early-onset psychosis : A resting state fMRI study. NeuroImage: Clinical, 33, 102881. https://doi.org/10.1016/j.nicl.2021.102881 CrossRefGoogle ScholarPubMed
Kanske, P., Böckler, A., Trautwein, F.-M., Parianen Lesemann, F. H., & Singer, T. (2016). Are strong empathizers better mentalizers? Evidence for independence and interaction between the routes of social cognition. Social Cognitive and Affective Neuroscience, 11(9), 13831392. https://doi.org/10.1093/scan/nsw052 CrossRefGoogle ScholarPubMed
Kanske, P., Böckler, A., Trautwein, F.-M., & Singer, T. (2015). Dissecting the social brain : Introducing the empaToM to reveal distinct neural networks and brain-behavior relations for empathy and theory of mind. NeuroImage, 122, 619. https://doi.org/10.1016/j.neuroimage.2015.07.082 CrossRefGoogle ScholarPubMed
Karcher, N. R., O’Brien, K. J., Kandala, S., & Barch, D. M. (2019). Resting-state functional connectivity and psychotic-like experiences in childhood : Results from the adolescent brain cognitive development study. Biological Psychiatry, 86(1), 715. https://doi.org/10.1016/j.biopsych.2019.01.013 CrossRefGoogle ScholarPubMed
Kelleher, I., Connor, D., Clarke, M. C., Devlin, N., Harley, M., & Cannon, M. (2012). Prevalence of psychotic symptoms in childhood and adolescence : A systematic review and meta-analysis of population-based studies. Psychological Medicine, 42(9), 18571863. https://doi.org/10.1017/S0033291711002960 CrossRefGoogle ScholarPubMed
Kelleher, I., Harley, M., Murtagh, A., & Cannon, M. (2011). Are screening instruments valid for psychotic-like experiences? A validation study of screening questions for psychotic-like experiences using in-depth clinical interview. Schizophrenia Bulletin, 37(2), 362369. https://doi.org/10.1093/schbul/sbp057 CrossRefGoogle ScholarPubMed
Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation—An ALE meta-analysis and MACM analysis. NeuroImage, 87, 345355. https://doi.org/10.1016/j.neuroimage.2013.11.001 CrossRefGoogle ScholarPubMed
Konings, M., Bak, M., Hanssen, M., Os, J. V., & Krabbendam, L. (2006). Validity and reliability of the CAPE : A self-report instrument for the measurement of psychotic experiences in the general population. Acta Psychiatrica Scandinavica, 114(1), 5561. https://doi.org/10.1111/j.1600-0447.2005.00741.x CrossRefGoogle Scholar
Kozhuharova, P., Saviola, F., Ettinger, U., & Allen, P. (2020). Neural correlates of social cognition in populations at risk of psychosis : A systematic review. Neuroscience & Biobehavioral Reviews, 108, 94111. https://doi.org/10.1016/j.neubiorev.2019.10.010 CrossRefGoogle ScholarPubMed
Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214(5), 579591. https://doi.org/10.1007/s00429-010-0251-3 CrossRefGoogle ScholarPubMed
Landry, M., Tremblay, J., Guyon, L., Bergeron, J., & Brunelle, N. (2004). La Grille de dépistage de la consommation problématique d’alcool et de drogues chez les adolescents et les adolescentes (DEP-ADO) : Développement et qualités psychométriques. Drogues, Santé et Société, 3(1), 2037.CrossRefGoogle Scholar
Laurens, K. R., Hodgins, S., Maughan, B., Murray, R. M., Rutter, M. L., & Taylor, E. A. (2007). Community screening for psychotic-like experiences and other putative antecedents of schizophrenia in children aged 9-12 years. Schizophrenia Research, 90(1), 130146. https://doi.org/10.1016/j.schres.2006.11.006 CrossRefGoogle ScholarPubMed
Lee, T. Y., Hong, S. B., Shin, N. Y., & Kwon, J. S. (2015). Social cognitive functioning in prodromal psychosis : A meta-analysis. Schizophrenia Research, 164(1), 2834. https://doi.org/10.1016/j.schres.2015.02.008 CrossRefGoogle ScholarPubMed
Li, S., Hu, N., Zhang, W., Tao, B., Dai, J., Gong, Y., Tan, Y., Cai, D., & Lui, S. (2019). Dysconnectivity of multiple brain networks in schizophrenia : A meta-analysis of resting-state functional connectivity. Frontiers in Psychiatry, 10, 482. https://doi.org/10.3389/fpsyt.2019.00482 CrossRefGoogle ScholarPubMed
Mackie, C. J., O’Leary-Barrett, M., Al-Khudhairy, N., Castellanos-Ryan, N., Struve, M., Topper, L., & Conrod, P. (2013). Adolescent bullying, cannabis use and emerging psychotic experiences : A longitudinal general population study. Psychological Medicine, 43(5), 10331044. https://doi.org/10.1017/S003329171200205X CrossRefGoogle ScholarPubMed
McGrath, J. J., Saha, S., Al-Hamzawi, A., Andrade, L., Benjet, C., Bromet, E. J., Browne, M. O., Caldas de Almeida, J. M., Chiu, W. T., Demyttenaere, K., Fayyad, J., Florescu, S., de Girolamo, G., Gureje, O., Haro, J. M., ten Have, M., Hu, C., Kovess-Masfety, V., Lim, C. C. W., Navarro-Mateu, F., Sampson, N., Posada-Villa, , Kendler, K. S., & Kessler, R. C. (2016). The bidirectional associations between psychotic experiences and DSM-IV mental disorders. American Journal of Psychiatry, 173(10), 9971006. https://doi.org/10.1176/appi.ajp.2016.15101293 CrossRefGoogle ScholarPubMed
Menon, M., Schmitz, T. W., Anderson, A. K., Graff, A., Korostil, M., Mamo, D., Gerretsen, P., Addington, J., Remington, G., & Kapur, S. (2011). Exploring the neural correlates of delusions of reference. Biological Psychiatry, 70(12), 11271133. https://doi.org/10.1016/j.biopsych.2011.05.037 CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control : A network model of insula function. Brain Structure and Function, 214(5), 655667. https://doi.org/10.1007/s00429-010-0262-0 CrossRefGoogle ScholarPubMed
Niendam, T. A., Lesh, T. A., Yoon, J., Westphal, A. J., Hutchison, N., Daniel Ragland, J., Solomon, M., Minzenberg, M., & Carter, C. S. (2014). Impaired context processing as a potential marker of psychosis risk state. Psychiatry Research: Neuroimaging, 221(1), 1320. https://doi.org/10.1016/j.pscychresns.2013.09.001 CrossRefGoogle ScholarPubMed
O’Leary-Barrett, M., Mâsse, B., Pihl, R. O., Stewart, S. H., Séguin, J. R., & Conrod, P. J. (2017). A cluster-randomized controlled trial evaluating the effects of delaying onset of adolescent substance abuse on cognitive development and addiction following a selective, personality-targeted intervention programme : The co-venture trial. Addiction (Abingdon, England), 112(10), 18711881. https://doi.org/10.1111/add.13876 CrossRefGoogle ScholarPubMed
O’Neill, A., Mechelli, A., & Bhattacharyya, S. (2019). Dysconnectivity of large-scale functional networks in early psychosis : A meta-analysis. Schizophrenia Bulletin, 45(3), 579590. https://doi.org/10.1093/schbul/sby094 CrossRefGoogle ScholarPubMed
Ochsner, K. N. (2008). The social-emotional processing stream : Five core constructs and their translational potential for schizophrenia and beyond. Biological Psychiatry, 64(1), 4861. https://doi.org/10.1016/j.biopsych.2008.04.024 CrossRefGoogle ScholarPubMed
Pelletier-Baldelli, A., Andrews-Hanna, J. R., & Mittal, V. A. (2018). Resting state connectivity dynamics in individuals at risk for psychosis. Journal of Abnormal Psychology, 127(3), 314325. https://doi.org/10.1037/abn0000330 CrossRefGoogle ScholarPubMed
Picó-Pérez, M., Vieira, R., Fernández-Rodríguez, M., Barros, M. A. P. D., Radua, J., & Morgado, P. (2022). Multimodal meta-analysis of structural gray matter, neurocognitive and social cognitive fMRI findings in schizophrenia patients. Psychological Medicine, 52(4), 614624. https://doi.org/10.1017/S0033291721005523 CrossRefGoogle ScholarPubMed
Potvin, S., Gamache, L., & Lungu, O. (2019). A functional neuroimaging meta-analysis of self-related processing in schizophrenia. Frontiers in Neurology, 10:990. https://doi.org/10.3389/fneur.2019.00990 CrossRefGoogle ScholarPubMed
Power, J. D. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84, 320341.CrossRefGoogle ScholarPubMed
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 21422154. https://doi.org/10.1016/j.neuroimage.2011.10.018 CrossRefGoogle ScholarPubMed
Sabaroedin, K., Tiego, J., Parkes, L., Sforazzini, F., Finlay, A., Johnson, B., Pinar, A., Cropley, V., Harrison, B. J., Zalesky, A., Pantelis, C., Bellgrove, M., & Fornito, A. (2019). Functional connectivity of corticostriatal circuitry and psychosis-like experiences in the general community. Biological Psychiatry, 86(1), 1624. https://doi.org/10.1016/j.biopsych.2019.02.013 CrossRefGoogle ScholarPubMed
Satterthwaite, T. D., & Baker, J. T. (2015). How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development? Current Opinion in Neurobiology, 30, 8591. https://doi.org/10.1016/j.conb.2014.10.005 CrossRefGoogle ScholarPubMed
Savla, G. N., Vella, L., Armstrong, C. C., Penn, D. L., & Twamley, E. W. (2013). Deficits in domains of social cognition in schizophrenia : A meta-analysis of the empirical evidence. Schizophrenia Bulletin, 39(5), 979992.CrossRefGoogle ScholarPubMed
Schilbach, L., Bzdok, D., Timmermans, B., Fox, P. T., Laird, A. R., Vogeley, K., & Eickhoff, S. B. (2012). Introspective minds: Using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition. PLoS ONE, 7(2), e30920. https://doi.org/10.1371/journal.pone.0030920 CrossRefGoogle ScholarPubMed
Schurz, M., Radua, J., Tholen, M. G., Maliske, L., Margulies, D. S., Mars, R. B., Sallet, J., & Kanske, P. (2021). Toward a hierarchical model of social cognition : A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychological Bulletin, 147(3), 293327. https://doi.org/10.1037/bul0000303 CrossRefGoogle Scholar
Sheffield, J. M., Huang, A. S., Rogers, B. P., Blackford, J. U., Heckers, S., & Woodward, N. D. (2021). Insula sub-regions across the psychosis spectrum : Morphology and clinical correlates. Translational Psychiatry, 11(1), 346. https://doi.org/10.1038/s41398-021-01461-0 CrossRefGoogle ScholarPubMed
Sheffield, J. M., Kandala, S., Burgess, G. C., Harms, M. P., & Barch, D. M. (2016). Cingulo-opercular network efficiency mediates the association between psychotic-like experiences and cognitive ability in the general population. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(6), 498506. https://doi.org/10.1016/j.bpsc.2016.03.009 Google ScholarPubMed
Sheffield, J. M., Rogers, B. P., Blackford, J. U., Heckers, S., & Woodward, N. D. (2020). Insula functional connectivity in schizophrenia. Schizophrenia Research, 220, 6977. https://doi.org/10.1016/j.schres.2020.03.068 CrossRefGoogle ScholarPubMed
Smucny, J., Dienel, S. J., Lewis, D. A., & Carter, C. S. (2022). Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology, 47(1), 292308. https://doi.org/10.1038/s41386-021-01089-0 CrossRefGoogle ScholarPubMed
Thapar, A., Heron, J., Jones, R. B., Owen, M. J., Lewis, G., & Zammit, S. (2012). Trajectories of change in self-reported psychotic-like experiences in childhood and adolescence. Schizophrenia Research, 140(1), 104109. https://doi.org/10.1016/j.schres.2012.06.024 CrossRefGoogle ScholarPubMed
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 5561. https://doi.org/10.1038/nrn3857 CrossRefGoogle Scholar
van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum : Evidence for a psychosis proneness-persistence–impairment model of psychotic disorder. Psychological Medicine, 39(2), 179195. https://doi.org/10.1017/S0033291708003814 CrossRefGoogle ScholarPubMed
Van Overwalle, F., Ma, Q., & Heleven, E. (2020). The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences : A meta-analysis. Social Cognitive and Affective Neuroscience, 15(9), 905928. https://doi.org/10.1093/scan/nsaa124 CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn : A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. https://doi.org/10.1089/brain.2012.0073 CrossRefGoogle Scholar
Wittmann, M. K., Kolling, N., Faber, N. S., Scholl, J., Nelissen, N., & Rushworth, M. F. S. (2016). Self-other mergence in the frontal cortex during cooperation and competition. Neuron, 91(2), 482493. https://doi.org/10.1016/j.neuron.2016.06.022 CrossRefGoogle ScholarPubMed
Wittmann, M. K., Trudel, N., Trier, H. A., Klein-Flügge, M. C., Sel, A., Verhagen, L., & Rushworth, M. F. S. (2021). Causal manipulation of self-other mergence in the dorsomedial prefrontal cortex. Neuron, 109(14), 23532361.e11. https://doi.org/10.1016/j.neuron.2021.05.027 CrossRefGoogle ScholarPubMed
Wylie, K. P., & Tregellas, J. R. (2010). The role of the insula in schizophrenia. Schizophrenia Research, 123(2), 93104. https://doi.org/10.1016/j.schres.2010.08.027 CrossRefGoogle ScholarPubMed
Yamasaki, S., Usami, S., Sasaki, R., Koike, S., Ando, S., Kitagawa, Y., Matamura, M., Fukushima, M., Yonehara, H., Foo, J. C., Nishida, A., & Sasaki, T. (2018). The association between changes in depression/anxiety and trajectories of psychotic-like experiences over a year in adolescence. Schizophrenia Research, 195, 149153. https://doi.org/10.1016/j.schres.2017.10.019 CrossRefGoogle Scholar